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ABSTRACT 

The stagnation region of a turbine vane is a critical area for assessing heat 

transfer. The heat loads at that region are influenced by many factors such as the 

turbulence intensity, length scales, interaction of the turbulent eddies, vortex stretching 

and rapid straining of the fluid streamlines. In such a situation, it becomes difficult for 

gas turbine designers to accurately predict the heat transfer rate at leading edge stagnation 

region. 

The purpose of this study is to investigate the response of high intensity free 

stream turbulence (FST) near the stagnation region of two different diameter leading edge 

cylinders in order to better understand the physics and to expand the parameter range for 

vane designers. Since FST has significant impact on the heat transfer augmentation, this 

study will examine the influence of elevated turbulence in the highly accelerating flow 

near the stagnation region. In the presence of the stagnation region of a body, turbulence 

can be intensified due to the straining field that elongates turbulent eddies or be blocked 

due to the presence of the wall. This amplification of turbulence allows eddies to 

penetrate closer to stagnation region surfaces and enhance the heat transfer augmentation. 

In this research, a comprehensive set of data including velocities, turbulent 

components, and turbulent spectral information were acquired for two different diameter 

(0.1016 m and 0.4064 m) cylinders. Data for local heat transfer was previously recorded
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by a previous graduate student. Hot wire measurements were acquired at various 

locations along the upstream stagnation stream line for a range of cylinder diameter 

Reynolds numbers and turbulence intensities. Turbulence measurements and energy 

spectra were acquired using hot-wire technique. Mean velocity profiles along the stream 

line were compared with computational fluid dynamic (CFD). 

 All these experiments were performed in UND’s large scale, low speed cascade 

wind tunnel facility. Results from the larger cylinder and smaller cylinders of 0.4064 m 

and 0.1016 m diameters accordingly indicated in the previous studies that increasing 

turbulence intensity augments heat transfer at the stagnation region and promotes 

transition to turbulent flow. However, it was also evident from the previous experiments 

that, on the small cylinder, augmentation levels were closer to the TRL model prediction 

than that on the larger cylinder. The smaller cylinder with aft body tends to exhibit more 

rapid straining of the turbulent eddies from the oncoming turbulence, which intensified 

turbulence near the stagnation region. 
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CHAPTER I 

INTRODUCTION 

A gas turbine is a heat engine that utilizes a high-temperature and high pressure 

gas as the working fluid by transforming the thermal energy into mechanical energy. The 

required energy is produced from combustion of a fuel with air resulting in the needed 

temperatures in the turbine. In general, a gas turbine engine consists of a compressor, 

combustion chamber, and turbine. Then the working fluid, from the combustor, is 

directed circumferentially by guide vanes at the exit of the combustor nozzle to impinge 

upon turbine airfoils to utilize the energy. The turbine blades pass the gas stream, through 

their streamlined shapes after utilizing the tangential momentum of the gas that produces 

the power. A series of turbine blade rows are attached to a rotor/shaft assembly in multi 

stages and coupled with a compressor. The shaft rotation drives an electric generator for 

land based gas turbines to produce power and the compressor to bring air to the gas 

turbine combustor. But in an aircraft engine the shaft rotates the multi stage compressors 

and the fan to draw air into the combustion chamber and create thrust. Gas turbines 

produce a high quality heat that can be used to generate steam for combined-cycle 

applications to significantly enhance thermal efficiency. For utility applications, the 

combined cycle is the typical choice because the steam produced by the gas turbine 

exhaust is used to power a steam turbine for additional electricity generation. The 

challenge of achieving higher thermal efficiency for improved performance and less NOx 
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emissions is reflected in the fact that they are conflicting goals, which magnifies the 

complexity. The higher temperatures typically produce higher NOx emissions. Moreover, 

limiting oxygen in order to lower NOx emissions can lead to unacceptably high levels of 

CO and unburned carbon emissions. In addition, increasing temperatures above the 1600
o
 

C used in today’s systems becomes a significant challenge to materials science and 

cooling designers. 

Gas turbine engines operate on a thermodynamic cycle called the Brayton cycle. 

In this cycle there are two fundamental ways to increase the efficiency of the engine: 

increasing the compression ratio and increasing combustion temperature. Modern 

combined cycles use gas turbines with pressure ratios designed to maximize the overall 

cycle efficiency rather than just the efficiency of the gas turbine, effectively setting the 

pressure ratio for a given setup. This constraint on pressure ratio leaves engine designers 

one option to increase efficiency: increase the combustion temperature. Over the past 70 

years, the gas turbine engine has gone through many modifications and improvements to 

attain the higher output and efficiency of the cycles. As a consequence, today’s gas 

turbine engines are widely used in the areas of power generation and aircraft propulsion. 

Today, the gas turbine industry is a very highly competitive field which is being 

driven by consumer demands for increased aero engines, higher thermal efficiency, 

reliability, and emissions. But the power output and efficiency of a gas turbine are 

directly a function of the turbine inlet temperature. In this regard, the gas turbine industry 

is continuously trying to increase the turbine inlet temperature. But this increase in the 

temperature causes both positive and negative consequences. Firstly, it increases the 
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efficiency of the cycle and secondly, it increases the erosion and deposition of 

particulates on the leading edge and upstream facing portions of the turbine vanes, 

creating a roughened surface. The presence of surface roughness on gas turbine vanes is 

known to decrease the efficiency of the engine by increasing the aerodynamic losses and 

increasing the heat transfer to the surface of the vane. 

The increase in heat transfer to the surface of the vane is a particularly critical 

variable in the reliability of an engine. Gas turbines that are designed to attain maximum 

efficiency may be operating at inlet gas temperatures that are significantly higher than the 

maximum operating temperature of the vane material. Some modern high efficiency 

plants operate at firing temperatures in excess of 1600º C. The reason the vanes are able 

to withstand the extreme temperatures is due to the presence of intricate internal cooling 

schemes, thermal barrier coatings, and film cooling, and predicted heat loads from the hot 

gasses to the vane surface. If the surface of the vane is slowly changed due to the 

accumulation of surface roughness, the heat transfer characteristics are then changed 

which may result in component failure due to overheating of the material. 

The stagnation region of a turbine vane is usually the area of high heat transfer 

and the level of heat load prediction can be complicated when hot gases combine with 

high intensity turbulence generated by the combustion system. Practically, turbulence 

intensities of up to 20 percent or more can be generated from the combustor. The 

interaction of turbulent eddies near the stagnation region is a complex phenomenon. The 

strain field can cause an intensification of relatively small eddies in the flow while the 

large eddies are blocked by the stagnation region surface. A combination of these various 
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factors such as high intensity freestream turbulence, very high Reynolds numbers, 

turbulent intensification due to rapid straining of the turbulent eddies contribute to the 

high levels of heat transfer augmentation generated at the leading edge stagnation region. 

Now it is becoming progressively more important to predict the heat load 

distribution in the components downstream of the combustor. Inaccurate predictions can 

result in poor reliability, reduced life cycle and extra cost for redesign or maintenance. 

With the use of advanced component cooling schemes, it is possible to attain gas 

temperatures significantly above the maximum temperature of the alloy.  

The intensification of turbulence in the vicinity of a stagnation region has 

previously been documented. However, turbulence seems to be unaffected along the 

pressure surface of a vane where the strain rate is smaller. Recent heat transfer 

measurements have suggested that turbulence may not be significantly intensified in the 

presence of large stagnation regions, which are becoming a more popular design for first 

vanes. Current work is focused on investigation of the turbulence decay and documenting 

the response of turbulence to large leading edge regions. These data should allow 

designers to improve predictive models and design more efficiently and reliable gas 

turbine components. 
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Figure 1: Rolls Royce AE 3007 turbofan engine used to power the Global 

Hawk surveillance aircraft (Courtesy of Rolls Royce). 

 

 

 

 

Figure 2: GE TM2500 Trailer Mounted Aeroderivative Gas Turbine (Courtesy of GE 

Energy). 
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CHAPTER II 

RELEVENT PAST STUDIES 

The purpose of the research is to investigate the response of high intensity free 

stream turbulence characteristics in the presence of the stagnation region of two different 

diameter leading edge cylinders while expanding the parameter range of turbulence 

effects on heat transfer for the designers. Since FST has a significant impact on the heat 

transfer augmentation; this study will examine the influence of elevated turbulence in the 

highly accelerating flow near the stagnation region. In the presence of the stagnation 

region of a body, turbulence can be intensified due to the strain field that elongates 

turbulent eddies. This amplification of turbulence allows eddies to penetrate closer to the 

stagnation region surfaces and enhance the heat transfer augmentation. Since the gas 

turbines have been in operation for decades, numerous studies similar to this have been 

conducted in the past. These studies focused on turbulence characteristics with the 

elevated turbulence intensity and Reynolds numbers.  The history of turbulent spectra in 

the upstream of a body will aid in the enhancement of turbulence modeling. A literature 

review of the major findings was conducted to assess the state of knowledge in the field 

and to add confidence to the experimental techniques. The review will look at the 

turbulence measurements, and computational predictions.
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A significant number of studies have documented average heat transfer at the 

stagnation region, but few studies have investigated heat transfer phenomena with details 

of the upstream turbulence history. These investigations examined a wide variation of 

relevant leading edge diameter aft body geometries but did not develop a quantitative link 

between the fluid flow field and its impact on the heat transfer. This research 

experimentally investigated the fluid dynamics and its characteristics near the stagnation 

region to enhance our understanding of the physics in this region. 

This study is intended to provide a database of local fluid dynamics including 

velocity, turbulent components, and turbulent spectra in the presence of leading edge 

cylinders with aft body to support the development of more physically based turbulence 

models for use in predictive modeling of external flows. 

 

2.1 Experimental Investigation of Turbulence Influence on Stagnation Region Heat 

Transfer 

 

Zapp (Zapp 1950) was an early investigator who studied the influence of 

turbulence on cylindrical stagnation region heat transfer. He produced turbulence levels 

of 3.0% and 11.5% using grids and found heat transfer increases up to 68%. The 

influence of turbulence intensity on heat transfer has previously been considered as an 

important parameter in any stagnation region heat transfer. Kestin (Kestin 1966) 

suggested that an implicit assumption that considered into many early heat transfer 
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studies was that the turbulent scale was sufficiently small in comparison with the 

dimensions of the body. 

Smith and Kuethe (Smith, M.C., and Kuethe, A.M. 1966) studied laminar heat 

transfer on a flat plate and a circular cylinder subjected to round rod square mesh grid 

generated turbulence up to 6 %. They found heat transfer increased about 30% in the 

laminar region of the flat plate and almost 70% increase on a circular cylinder. They 

suggested that the eddy diffusivity across the laminar boundary layer near stagnation 

region was proportional to the free stream turbulence times the wall normal distance (εM 

∝ Tu y). They also came up with an approximately linear relationship between NuD/ReD 

1/2
 and a parameter TuReD

1/2
 they developed to correlate their findings. Smith and 

Kuethe’s correlating parameter, TuReD
 1/2

, has previously been used widely as the basis to 

fit data from a range of investigations. 

Later Kestin and Wood (Kestin, J., and Wood, R.T. 1971) investigated the effect 

of Reynolds number (75, 100 and 125
 
× 10

3
) on the cylinders placed in cross flow at

 
three 

at varying levels of turbulence
 
intensity. In the range where the boundary layer is 

laminar,
 
the effect of turbulence intensity is always to increase the heat transfer rate, 

approximately by a constant factor Φ which is a function of the turbulence intensity as 

well as the Reynolds number.
 
Across the turbulent boundary layer and wake the influence 

is
 
not systematic, as both increases and decreases are observed. The

 
data for the 

stagnation line are compared with other measurements.
 
They also used TuReD

1/2
 to 

develop correlations
 
as suggested by a semi empirical theory due to Smith and

 
Kuethe 

(Smith, M.C., and Kuethe, A.M. 1966). However, the global correlation equation (a 
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second-degree polynomial) differs
 
from the originally proposed linear relationship, and 

the uncertainty was quoted
 
on the order of ±8 percent. 

The nature of the freestream turbulence in the proximity of a stagnation point has 

been experimentally studied by P. W. Bearman (P.W.Bearman 1972). He measured all 

three components of the velocity as the flow approached a 2-D bluff body. The most 

remarkable increase in unsteadiness was measured for the w′ component in the direction 

transverse to the flow. His results also showed the distortion of grid generated turbulence 

as it approaches the stagnation region and explained by vortex stretching of the 

turbulence. 

The bluff body he had used was a flat plate which was designed according to 

Roshko’s notched hodograph method, as shown in figure below. Turbulence 

measurements were made using constant temperature anemometer (CTA) system. A 

traverse gear was embedded in the model to move the probe holder along the stagnation 

streamline. The values of the turbulence scale were estimated from power spectral 

density measurement based on Tylor’s hypothesis. 

 

 

Figure 3: Flat-plate Free-Streamline Model by Bearman (P.W.Bearman 1972). 
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His primary interest was to study the distortion of grid-generated turbulence as it 

approaches near the bluff body. He used four different grids for his experiment shown in 

Table 1 and investigated the turbulence structure behind the grids. He performed these 

measurements in the absence of the model, at a distance from the grid, corresponding to 

the stagnation point. 

Table 1: Table of various grid sizes and locations in Bearman’s (P.W.Bearman 1972) 

investigation. 

 

 

He also made some hot-wire measurements for mean velocity distribution 

upstream of the bluff body and compared the data with Roshko’s hodograph method and 

there was a good agreement between the experimental data and the predicted curve 

except near the stagnation region. 
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Figure 4: Mean velocity approaching stagnation region. O-smooth flow; ∆-grid; 

−−−hodograph solution (P.W.Bearman 1972). 

 

According to Bearman, when Lx/D >> 1, a quasi-steady type of approach may be 

used, and along the stagnation streamline, (
2

u )
1/2

 attenuates similar to the mean flow 

pattern. However, when Lx/D << 1, turbulence is distorted by the mean flow field and (

2
u )

1/2 amplifies due to vortex stretching. He also found the combination of these effects 

with attenuation of energy at low wave numbers and amplification at high wave numbers 

for Lx/D= O (1). 

Britter, Hunt, and Mumford (R. E. Britter, J. C. R. Hunt AND J. C. Mumford 

1979) experimentally studied the response of grid-generated turbulence past a circular 

cylinder  using hot-wire anemometry over a Reynolds number range from 4.25 x 10
3
 to 

2.74 x 10
4
 and a range of intensities from 0.025 to 0.062. Measurements of the mean 

velocity distribution, and rms intensities and spectral energy densities of the turbulent 

velocity fluctuations are presented for various radial and circumferential positions 

relative to the cylinder, and for ratios of the cylinder radius a to the scale of the incident 
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turbulence Lx, ranging from 0.05 to 1.42. The influence of upstream conditions on the 

flow in the cylinder wake and its associated induced velocity fluctuations is discussed. 

Their results usually supported Hunt’s predictions. They determined the response of 

spectra approaching a cylinder and found the amplification of relatively high wave 

number spectra by the cylindrical strain field and the blocking of relatively low 

wavenumber spectra by the cylinder’s surface. 

VanFossen and Simoneau (VanFossen, G. J.& Simoneau, R. J. 1987) studied the 

relationship between FST and stagnation region heat transfer.  They generated Reynolds 

number ranging from 13,000 to 177, 000 and measured spanwise averaged heat transfer 

rate for high and low turbulence cases. They also made some hot-wire measurements near 

the stagnation region and found that the mean velocity dropped monotonically as the flow 

approached to the stagnation region. They also suggested that the vorticity could be 

amplified due to the mean velocity gradients as flow moves closer to the stagnation 

region.  

Ames and Moffat (Ames, F.E., and Moffat, R.J. 1990) investigated the influence 

of high intensity large scale turbulence on cylindrical stagnation region heat transfer. 

They compared their results with Kestin and Wood’s (Kestin, J., and Wood, R.T. 1971) 

correlation based on cylinder diameter for a given turbulence generator and the data fell 

well below. They developed a simple spectral model based on the previous work from 

Hunt (Hunt 1973) and Britter, Hunt, and Mumford (R. E. Britter, J. C. R. Hunt AND J. C. 

Mumford 1979) which considered the intensification of high wavenumber spectra due to 

the straining and the blocking of low wavenumber spectra due to the proximity to the 

surface. They developed a simple eddy diffusivity model using the spectral model of 
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turbulence. They also developed the parameter TRL parameter [Tu ReD
5/12

(Lu/D)
1/3

] for 

stagnation region heat transfer based on the eddy diffusivity model using scaling derived 

from the turbulent heat flux equation. Later, Ames et al. [(Ames, F.E., and Moffat, R.J. 

1990), (Ames 1997), (Ames, F.E., Wang, C., and Barbot, P.A. 2003),  (F. E. Ames, L. A. 

Dvorak, and M. J. Morrow 2005)] have correlated a range of stagnation region heat 

transfer data with that and suggested a good engineering estimation for the stagnation 

region heat transfer is Nu/Nu0 = 1 + 0.04*TRL.  

Mehendale et al. (Mehendale, A.B., Han, J.C., and Ou, S. 1991) studied grid 

generated mainstream turbulence effect on leading edge heat transfer. They generated 

turbulence by using a bar
 
grid (Tu = 3.3–5.1%), passive grid (Tu = 7.6–9.7

 
%), and an 

innovative jet grid (Tu = 12.9–15.2 %). They considered leading
 
edge diameter Reynolds 

numbers of 25,000, 40,000, and 100,000. They measured spanwise and 

streamwise
 
distributions of local heat transfer coefficients on the leading edge

 
and flat 

sidewall. They found that the
 
leading edge heat transfer increases appreciably with 

increasing mainstream turbulence
 
intensity, but the effect weakens at the end of the

 
flat 

sidewall due to turbulence decay. Stagnation point heat transfer
 
results for high 

turbulence intensity flows are in good agreement with the Lowery
 
and Vachon’s 

correlation (Lowery, G.W., Vachon, R.I. 1975), but the overall heat transfer results 

for
 
the leading edge quarter-cylinder region are over estimated for their overall

 
correlation 

for the entire circular cylinder region. 

Van Fossen, G.J., Simoneau, R.J., and Ching, C.Y (Van Fossen, G.J., Simoneau, 

R.J., and Ching, C.Y. 1995) investigated the influence of free-stream turbulence intensity, 

length scale, Reynolds number, and leading-edge velocity gradient on stagnation-region 
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heat transfer in their experiment. Heat transfer was measured in the stagnation region for 

four models with elliptical leading edges downstream of five turbulence-generating grids. 

They concluded that stagnation-region heat transfer augmentation increased with 

decreasing length scale but they failed to define an optimum scale for the turbulence 

generating grid used in their study. An empirical correlation was developed that fit heat 

transfer data for isotropic turbulence to within ±4 percent but did not predict data for 

anisotropic turbulence. Stagnation heat transfer augmentation caused by turbulence was 

unaffected by the velocity gradient. The data of other researchers compared well with the 

correlation. A method of predicting heat transfer downstream of the stagnation point was 

also developed. 

Ames (Ames 1997) and Ames et al. (Ames, F.E., Wang, C., and Barbot, P.A. 

2003, Ames, F.E., Argenziano, M., Wang 2004) investigated heat transfer augmentation 

on the stagnation regions and laminar pressure sides of turbine vanes. Their results 

showed that while heat transfer augmentation in the stagnation region correlates the TRL 

parameter [TuReD
5/12

 (Lu/D)
 1/3

], augmentation on the pressure side correlated more 

closely to [TuReC
1/3

 (Lu/C)
 1/3

], where C is the cord length. They suggested that 

turbulence in the stagnation region was intensified due to the strain field. However, even 

though the relative level of heat transfer augmentation was high, the straining of 

turbulence along the pressure side had no noticeable effect on heat transfer augmentation. 

Van Fossen and Chan Y. Ching (G. James Van Fossen and Chan Y. Ching 1997) 

also studied the influence of integral length scales on stagnation region heat transfer of a 

circular leading edge along with wide range of different grid generated turbulence. Their 
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objective was to determine a length scale that could be responsible for the greatest 

augmentation in stagnation region heat transfer for a given turbulence intensity.  They 

also aimed to develop a prediction tool for stagnation heat transfer in the presence of 

FST. Five turbulence generating grids were used producing turbulence intensities in the 

range of 1.1 to 15.9 % while the ratio of integral length scale to cylinder diameter (Lx/D) 

ranged from 0.05 to 0.30. They estimated turbulence intensity and integral length as a 

function of distance from the grids. Data were captured at cylinder Reynolds numbers 

ranging from 42,000 to 193,000. Results showed that stagnation region heat transfer rate 

increases by turbulent augmentation as length scale decreases. Though an optimum scale 

was not found, but they developed a correlation that fit heat transfer data for the square 

bar grids to within +4%. They also suggested that the degree of isotropy in the turbulent 

flow field has a large impact on stagnation heat transfer.  

The effect of free stream turbulence on local mass transfer from a circular 

cylinder is experimentally investigated by S. Sanitjai, and R.J. Goldstein (S. Sanitjai 

2001) at different Reynolds number ranging from 3.0×10
4
 to 8.3×10

4
, turbulence 

intensity from 0.2% to 23.7% and integral length scale from 0.8 to 6.3 cm using four 

turbulence generators. Three of them are grid and other one is a combustor-like 

turbulence generator. They found that the pattern of mass transfer distribution changes 

considerably with free stream turbulence. They also studied the effect of a splitter plate 

on local mass transfer and visualized the flow field near the surface using an 

oil/lampblack mixture. They also documented the streamwise turbulence intensity and 

longitudinal length scale variation without the cylinder in position in Figure 5. 
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Figure 5: Distribution of TI and Length Scale in streamwise direction (y/d = 0 and z/d = 

4.57) 

They concluded that the front stagnation line mass transfer changes significantly 

with the FST and it increases up to 60% as the turbulence intensity goes from 0.2% to 

23% at highest Reynolds number. They also described that FST has strong effects on the 

flow around a cylinder which is why high levels of FST are needed to alter flow 

characteristics at low Reynolds number. At the end of the paper, they suggested the 

following correlation included the Reynolds number, Turbulence Intensity and the length 

scale effects 
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Van Fossen and Bunker (Van Fossen, G. James and Bunker, Ronald S 2001) 

measured the stagnation region heat transfer due to turbulence from a Dry Low NOx 

(DLN) can combustor, and found that stagnation point heat transfer increased in the 

presence of turbulence by 77% compared to the laminar case. Their DLN combustor was 

a can type with 6 fuel-air swirlers, each swirler  having 12 large air swirl vanes on the 

outer side and a 16-vane diffusion tip on the inside. The mock combustor had no dilution 

holes and no fuel in it, but generated a swirl and high turbulence intensity comparable to 

a land-based power turbine. The DLN data was significantly underpredicted by Van 

Fossen’s parameter and moderately over predicted by the TRL parameter. Their heat 

transfer model had a cylindrical leading edge which transitioned to a flat plate surface 

downstream with 19 heated aluminum strips on the rear of the model. They also included 

the hot-wire measurements and showed that very high levels of free-stream turbulence 

were generated, estimated to be spanwise-averaged turbulence intensity of 28.5%.   
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Figure 6: Rig Layout.(Smith, M.C., and Kuethe, A.M. 1966) 

 

Oo and Ching (Oo, A.N., and Ching, C.Y. 2002) investigated the influence of 

vortical structures in the flow by generating turbulence with uni-planar round rod grids 

perpendicular and parallel to the stagnation line. Oo and Ching’s data did not correlate 

well with Van Fossen’s correlation and improved significantly when a dimensionless 

vortex parameter was included. 

K.A. Thole et al. (K.A. Thole, R.W. Radomsky, M.B. Kang, A. Kohli 2002) also 

investigated the elevated free stream turbulence effect on the heat transfer for a turbine 

vane.  They have generated an approach turbulence level of 19.5% and compared it with 

0.6% turbulence level as a baseline. At the same time, they also made BL measurements 

for better understanding the effect of high free stream turbulence. They found that the 

velocity fluctuations were mostly anisotropic and increased in magnitude when 

approaching the vane. They also found heat transfer augmentation increases 80% along 
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the pressure side and 25% at endwall compared to the low free stream turbulence (0.6%) 

case. They compared data based on a range of correlations that were available from the 

other previous researchers. However, those correlations showed heat transfer 

augmentation at elevated turbulence levels but still they underpredicted the augmentation 

level. 

Nix and Diller (Nix, A.C., Diller, T.E. 2009) studied the physical mechanism of 

the augmentation of stagnation point heat transfer from a cylinder by FST. They used five 

different grids for the purpose of generating a wide range of turbulent intensities, 

containing different turbulent length scales. They used hot wire to measure the crossflow 

velocity at different upstream positions of the stagnation point which produced the 

information regarding the average velocity and fluctuating component including the 

turbulence intensity and integral length scale. Their fundamental model concept was that, 

eddies penetrate from freestream through the boundary layer into the surface. The 

resulting predictions of the analytical model matched well with the measured heat 

transfer augmentation. And they used the following equation that was previously 

suggested by Nix et al.(Nix, A.C., Diller, T.E., and Ng, W. F.) to calculate the turbulent 

heat transfer based on the idea that the increase in stagnation region heat transfer could be 

correlated based on integral length scale 
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Figure 7: Wind tunnel and turbulence grid used in Nix and Diller’s (Nix, A.C., Diller, 

T.E. 2009) experiment. 

 

(a) (b) 

Figure 8: Velocity profile and Turbulence length scale distribution as a function of 

distance from the cylinder in Nix and Diller’s (Nix, A.C., Diller, T.E. 2009) experiment. 
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(c) 
(d) 

Figure 9: Streamwise rms velocity and turbulence distribution as a function of distance 

from the cylinder in Nix and Diller’s (Nix, A.C., Diller, T.E. 2009) experiment. 

The mean velocity profile as a function of distance (x) from the cylinder showed 

good agreement with the potential flow solution for the no grid condition. Also the local 

turbulent intensity increases sharply as mean velocity decreases and so does the length 

scale, as the cylinder stagnation region is approached. They did not find any noticeable 

change in the rms velocity fluctuation, u′. The results also indicated a small band of 

frequencies for that rms velocity fluctuation affect the surface heat transfer. They 

suggested that the large scale eddies penetrates the boundary layer and gives rise of 

turbulent heat transfer augmentation reported to be 45-65% higher in their experiment.  

Gifford et al. (Gifford, A.R., Diller, T.E., and Vlachos, P.P. 2011) also 

investigated the heat transfer in the stagnation region subjected to FST.  They suggested 

that the coherent structure of eddies that enters the stagnation region is subjected to 

amplification and stretching of vorticity. This effect allows eddies to penetrate the 

momentum and thermal boundary layers with sufficient energy that give rise to the local 

heat transfer.  
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2.2 Numerical Investigation of Turbulence Effects Stagnation Region Heat Transfer 

 

S. P. Sutera (Sutera S.P 1965) investigated vorticity amplification in the presence 

of a stagnation region and its effect on the heat transfer numerically. In his study he 

extended the work that suggested by Sutera et al. (Sutera S.P., Maeder P.F. and Kestin J. 

1963) previously and dealt with more general case. He considered a stagnation point flow 

containing unidirectional and distributed vorticity of a scale which is 1.5 times the 

neutral. He found that a vorticity input which increases the wall shear rate by less than 

3% can increase the wall heat transfer rate by approximately 40 %. He also suggested that 

for that given orientation, vorticity is amplified as it approaches the boundary layer and 

induces significant three dimensional effects within the boundary layer and resulting heat 

transfer augmentation. 

Hunt (Hunt 1973) analytically investigated the response of turbulence in the 

presence of a circular cylinder body in turbulent cross flow using rapid distortion of 

turbulence theory (RDT). He performed computations and found velocity spectra for the 

limiting cases where the turbulence scale is very much larger or smaller than the size of 

the body. His results suggest that relatively small scales are intensified in the stagnation 

region strain field and that relatively large scales are attenuated in a manner similar to the 

mean flow as the flow approaches neat the stagnation region. 

Rigby and Van Fossen (Rigby, D.L., and Van Fossen, G.J. 1991) numerically 

investigated the influence of spanwise variations of freestream velocity on cylindrical 

stagnation region heat transfer. They found the vorticity introduced by the spanwise 
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variations amplified near the stagnation region due to vortex stretching. This mechanism 

can cause periodic arrays of structures similar to horseshoe vortices, which give a 

considerable rise in the spanwise averaged heat transfer coefficients.  

Bae, Lele, and Sung (S. Bae, S.K.Lele and H.J.Sung 2000) performed a series of 

numerical simulations and found that the amplification of streamwise vorticity enhances 

stagnation region heat transfer. They imposed sinusoidal disturbances of wavelength, λ, 

and relative amplitude, A, on the free stream analogous to Rigby and Van Fossen (Rigby, 

D.L., and Van Fossen, G.J. 1991) to examine the effect on stagnation region heat transfer. 

Their results suggested three regimes which they called (a) the damping regime where λ/δ 

< 2.7, (b) the attached amplifying regime where 2.7 < λ/δ < 5.3 and (c) the detached 

amplifying regime where λ/δ > 5.3. They defined δ, as the boundary layer thickness for 

the undisturbed flow. They concluded that in the damping regime, disturbances were 

damped and heat transfer augmentation was lower. The streamwise vorticity attached to 

the wall in the attached amplifying regime, and heat transfer, for a given Reynolds 

number and amplitude, was maximized. In the detached amplifying regime, the 

streamwise vorticity was remained separate from the wall and the heat transfer 

augmentation decreased with increasing wavelength. They also compared the results 

from the attached and detached amplifying regimes with the TRL parameter by Ames et 

al. (Ames, F.E., and Moffat, R.J. 1990). The data fit the correlation quite well. 

The effect of incoming organized disturbances and free-stream turbulence on 

leading-edge heat transfer was investigated by Z. Xiong and S. K. Lele (Zhongmin Xiong 

and Sanjiva K. Lele 2007) numerically. They found an optimum length scale to give the 

maximum heat transfer enhancement for the organized disturbance situation but other 
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than this optimum value, the enhancement decreases with the increase of length scale. 

They performed large eddy simulation (LES) with dynamic SGS model at Reynolds 

number ReD = 10
4

 based on upstream approach velocity and the leading edge diameter. 

They considered homogeneous, isotropic turbulence with intensity u′rms/u∞ = 0.08 and 

integral length scale of L/D = 0.1. They characterized three different regions where the 

interaction of turbulence impinged on the leading edge. The simulation gave a turbulent 

heat transfer enhancement of 11%, which they claimed is in fair agreement with the 

experimental data. Their outcomes also motivated a hybrid simulation strategy where the 

turbulence outside and away from a blade surface was captured using LES techniques 

while a finer DNS-like grid was embedded within the near-wall region to resolve the 

smaller eddies responsible for near-wall effects. Fig. 10 shows the turbulence intensity 

along the stagnation stream line that they represented from their simulation. The root-

mean-square values are obtained by averaging u', v', and w' in time and in the spanwise 

direction. The turbulence is largely decaying until it reaches a distance of about D from 

the leading edge where the behavior of u', v' and w' changes. And It is noticeable that 

close to the body u' and w' are amplified while v' continues to decay. In Van Fossen's 

(Van Fossen, G.J., Simoneau, R.J., and Ching, C.Y. 1995) experiment, a power law curve 

of the form Tu ~ x
m

 was used to fit the decay of free-stream turbulence in the absence of 

the model versus the distance downstream of the turbulence-generating grid. The power-

law fitted curve is also plotted in Fig. 15 with the same exponent m = - 0.83 as used in 

the experiments. The fairly good agreement indicates that the initial decay rate of the 

free-stream turbulence has been captured correctly by their simulation. 
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Figure 10: Turbulence intensity along the stagnation streamline (Zhongmin Xiong and 

Sanjiva K. Lele 2007). The solid line is a power law fit using the same the exponent (-

0.83) as in Van Folssen's (Van Fossen, G.J., Simoneau, R.J., and Ching, C.Y. 1995) 

experiment. 

 

 

Figure 11: Turbulence intensity along the stagnation streamline, transformed x axis 

(Zhongmin Xiong and Sanjiva K. Lele 2007). 
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2.3 Present Viewpoint 

 

The augmentation of stagnation region heat transfer due to flow field turbulence is 

a scientifically interesting problem with high relevance to gas turbine design. Different 

investigators have studied this problem and have attempted to rationalize results from a 

range of different perspectives including empirical, turbulent spectrum based, coherent 

structure, and numerical. The main focus of this present research is to systematically 

expand the parameter range into higher Reynolds numbers by using larger diameter 

cylinders. Stagnation region heat transfer has been studied using these large cylinders 

with high turbulence levels over a range of turbulent scales. The present study is intended 

to favor the perspective of references in analyzing and reporting these results. However, 

the objective is to make this comprehensive data set available to other investigators in 

this area. 
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CHAPTER III 

 

EXPERIMENTAL SETUP 

This chapter provides a comprehensive description of the experimental set up and 

the test facility used for acquiring streamwise turbulence data in the presence of the 

stagnation region. The experimental measurements were captured in a relatively large 

scale, low speed wind tunnel facility. Two large cylindrical leading edge test bodies were 

used when turbulence measurements were acquired in the flow field upstream to the 

stagnation region. Two grids and two mock aero-combustor turbulence generators were 

used to generate 6 different inlet turbulence conditions for this study. The test bodies 

allowed Reynolds numbers based on the leading edge diameter and the approach velocity 

to reach from a minimum of 15,625 to a maximum of 500,000. 

 

3.1Wind Tunnel Facility 

The University of North Dakota’s low speed, large scale wind tunnel with a 

Plexiglas test section has been used for the experiments shown in Figure 12. The test 

bodies were placed inside the rectangular test section made of Plexiglas. 

The wind tunnel is an assembly of several pieces of equipment: an inlet filter 

plenum, a large centrifugal blower, a two stage diffuser, a finned air-water heat 

exchanger, a screen box, a conventional nozzle with or without a spool which can be 
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replaced with one of the mock combustors based on the inlet condition developed. 

Finally, the test section is attached which holds the test body with a traversing system.  

Air is brought up inside the wind tunnel through eight filters with a 90 ~ 95% 

filtering efficiency, mounted in a wooden plenum that is attached to the inlet of the 

blower. The filters are used to protect delicate downstream instrumentation such as 

hotwires that can be easily damaged by the presence of dirt particles in the air. A large 

centrifugal blower from New York Blower (model AF-Forty size 274) with a rated 

capacity of 6.6 m
3
/s airflow at a static pressure rise of 5000 Pa was used to draw the air 

inside the system. The blower is driven by a 45 kW induction motor using V belts and 

pulleys. A variable frequency drive is used to adjust motor speed according to the desired 

Reynolds number at the inlet of the test section. 

 

Figure 12: Schematic of Low Speed Wind Tunnel with Cylindrical Test Section. 

 

 

Air, from the exit of the blower, moves through a two stage multi-vane diffusers. 

They diffusers are used to recover static pressure by decreasing the velocity of the air. 
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The diffusers increase the flow area from 16.5″ x 24.25″ (400.125 in
2
) to 36″ x 50″ (1800 

in
2
) in two stages. The dimensions of the diffusers along with design details are reported 

along with schematic diagrams by (Preethi Gandavarapu 2011).  

Air, exiting from the diffusers, flow into an air to water finned tube heat 

exchanger. The heat exchanger is maintained at constant temperature by supplying a 

steady stream of re-circulated cooling water.  Water was circulated using a 0.5 HP 

Jacuzzi centrifugal pump that connected to tank with a capacity of 100 gallons as seen in  

Figure 13 and Figure 14. Heat is gained by the water which is removed from the 

system by discharging a small amount from the tank. Cold makeup water is added to the 

tank continuously to keep a constant water temperature. The makeup water flowing into 

the tank is regulated by a ball valve to maintain a constant air temperature in the test 

section for long surveys requiring steady state conditions which can last up to 8 to 10 

hours. 

.  

Figure 13: Schematic of the heat exchanger cooling water system (Barbot 2003). 
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Figure 14: Heat exchanger cooling water pump and tank installation (Barbot 2003). 

 

After passing the heat exchanger, air flows into a flow conditioning unit 

consisting of 4 fine mesh nylon screens spaced at 2″ (5 cm). The screens are used to 

minimize the velocity variations across the duct. The conditioned air then enters into a 

3.6:1 area ratio nozzle or an aero-derivative combustor turbulence generator depending 

on the turbulence condition required in the test section. Area contraction in the smooth 

nozzle generates the uniform flow entering the test section by accelerating the air. A 

rectangular spool made of Plexiglas which contains one of the two grids at different 

locations is attached after the nozzle to produce grid generated turbulence. 

Air flows into the test section after exiting from the nozzle or a turbulence 

generator. The test section simulates the leading edge of a turbine vane with larger 



www.manaraa.com

31 

 

diameter. The test section is instrumented with an upstream total pressure, downstream 

static pressure, and total temperature measurement probes. Tunnel approach velocity is 

calculated using upstream total and downstream static pressure based on a ratio estimated 

from CFD predictions.  

 

3.2 Turbulence Generators 

Gas turbine combustors are expected to generate high turbulence intensities to 

enhance mixing of fuel-air mixture with hot products to sustain combustion. This 

elevated turbulence tends to augment heat transfer rates near the stagnation region of the 

first stage vanes.  The relative length scale of turbulence helps researchers and designers 

understand the influence of turbulence on heat transfer in the stagnation region.  To 

simulate the exit condition from a combustor, investigators have most often used grids to 

generate turbulence. However, it is also essential to study the turbulence characteristics of 

combustor exit flows to predict the heat transfer inside the turbine. This experiment has 

been designed to investigate the evolution of turbulence characteristics in the presence of 

a cylindrical leading edge of a vane. Various flow fields were generated using turbulence 

generators and grid turbulence sections with characteristics similar to a realistic 

combustor. The schematic of the aero-combustor turbulence generator is shown in Figure 

17. 

The mock combustors have been developed to produce large scale high intensity 

turbulence that mimics many current gas turbine engine combustors (Forrest E. Ames 

1990). Our mock combustor has an inner liner fitted with a slotted back panel to create 
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wall jets, and it has two rows of tubes that create holes on the side panels to simulate 

primary and dilution jets. The mock-combustors direct flow through either 2:1or 1:1 area 

ratio nozzles inlet which increases average flow velocity. Two types of turbulence 

generators were chosen to investigate the distortion of turbulence in the presence of the 

cylinders. 

 

3.2.1 Aero-combustor  

The aero-combustor presented in Figure 15 is designed with two side panels 

containing holes and a slotted back panel. The side panels have two rows of ten holes 

with 6.35 cm ID and mounted inside the combustor box using an angle iron bracket. The 

panels are shown in Figure 15 flashed with the 2:1 inlet contraction nozzle wall. Each 

hole is lined with a 0.55 cm thick wall tube which protrudes 6.35 cm into the generator 

box in order to better direct the air flow. The first row serves the purpose of primary 

holes and is centered 25.4 cm from the inside wall of the back panel. The second row, 

serves as dilution holes and is spaced 25.4 cm from the first row of holes. The back panel 

is comprised of two rows of five slots. Each slot is 20.32 cm by 3.175 cm rectangle in 

size. The slots centerlines are placed 3.81 cm from the outer edges of the panel. 

 

3.2.2. High Turbulence Generator  

The high turbulence generator uses the same orientation of side and back panels 

as the aero-combustor but it is re-scaled by a factor of 2. The holes diameter and the slot 
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sizes are scaled down by a factor of two and the number of holes and slots are doubled on 

the panels. Figure 17 shows front and back of the turbulence generators. 

The holes are fabricated using 0.38 cm wall plastic tubes which are glued in the 

holes of the side panel. The hole centers are spaced 12.7 cm and 25.4 cm from the inside 

surface of the back panel. The slots in the back panel consist of 20 11.3 cm by 1.58 cm 

rectangular holes in two rows. Similar to the aero-combustor, the holed panels are located 

on the sides and the slotted back panel is mounted perpendicular to the side panels. The 

high turbulence generator directs air into the test section without any contraction. 

 

Figure 15: Schematic of aeroderivative combustor turbulence generator. 
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Figure 16: Front view of Aero Combustor and High Turbulence Generator. 

 

 

Figure 17: Rear view of Aero Combustor and High Turbulence Generator. 
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3.2.3 Grid Generated Turbulence 

The grid turbulence section uses the 3.6 to 1 area ratio nozzle as well as an 

additional section in which the actual grid is mounted. Grid turbulence was generated, 

using two bi-planar, square bar, square mesh grids with a 2:1 variation in size and mesh 

spacing installed upstream the test section. It is held in a 91.5 cm long x 25.4 cm wide 

rectangular section joining the nozzle to the test section, with a cross sectional area equal 

to the test section inlet. 

The smaller grid is an assembly of a 0.635 cm square aluminum bar, with a 

regular mesh spacing of 3.175 cm. This smaller grid was placed at two different locations 

in a rectangular spool upstream of the test surface- one at 10 mesh lengths and the other 

at 32 mesh lengths producing turbulence intensities of about 9.2% and 3.1% respectively 

at the measurement plane 7 cm upstream of the leading edge plane with no cylinder in 

place. The second grid is larger and fabricated from 1.27 cm square aluminum bars 

having a spanwise and pitchwise spacing of 6.35 cm producing a 64% open area. The 

grid was placed at a location of about 10 mesh lengths upstream from the leading edge 

plane of the cylinder. 
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Figure 18: The grid turbulence generator assembly (Indrajit Jaswal 2008). 

Both the aero-combustor and large grid turbulence generation sections have been 

documented previously by Ames et al. (Ames, F.E., Barbot, P.A., Wang, C 2003), 

(Ames, F.E., Wang, C., and Barbot, P.A. 2003), and (Ames, F.E., Argenziano, M., Wang 

2004). Inlet turbulence intensities, turbulent scales, and dissipation rates at different 

Reynolds numbers for the low turbulence, aero-combustor turbulence, and grid 

turbulence conditions are summarized in Table 1, Appendix A. 

 

3.3 Traversing Section 

A stepper motor driven traversing system from Velmex, Inc. was used to move 

the hot wire probe holder to different streamwise locations from the stagnation region. 

50 
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The traversing mechanism was designed and fabricated using a steel tube of 3/8″ 

diameter that can hold the custom made probe. The center axis of traversing section was 

aligned with the centerline of the cylinder body. To ensure fewer disturbances in the 

oncoming flow the probe holder nose was designed based on the potential flow theory. 

The probe could reach up to 24 inches using the traversing section.  

 

Figure 19 shows a single axis unislide system that can travel 60.96 cm (24 in) in 

the x - direction. This stepper motors have 400 steps/revolution and lead screws with a 

pitch of 0.0635 cm/revolution. The unislide was attached with a 63.5 cm x 25.4 cm flat 

plate which was centered inside the Plexiglas test section. Three windows made of 1.27 

cm thick acrylic sheet were placed on one side of the test section to provide access in 

aligning the components inside the cylinder. 

 

 

Figure 19: Traversing section inside the testing tunnel. 
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3.4 Fabrication of Test Bodies 

The test surfaces were designed with 0.1016 m and 0.4064 m diameter leading 

edge surfaces. The cylinders were fabricated out of 1″ polyisocynaurate foam boards, and 

0.5″plywood which were covered with 0.38 mm G10 fiberglass epoxy board. In the first 

step, the foam boards and plywood were cut by using a machined fixture and a router. 

The foam and plywood were piled up using foam glue up to 10″. After gluing, the 

cylinder tip was cut by 4″ to set up the modified tip. The tip was assembled with the test 

surface by securing the tip using screws driven into the plywood. The remainder of the 

surface was designed to accelerate the flow smoothly along the surface. The half profiles 

of the geometry for the leading edge surfaces are presented in Figure 20. The predicted 

surface velocity distributions in Figure 21 initially show a strong region of constant 

acceleration over the first 30 degrees of the leading edge cylindrical surface where the 

radius is constant and after that the rate of growth of velocity decreases substantially.  

The cylindrical leading edge surfaces were placed inside a 25.4 cm wide by 127 

cm high test section. The leading edges of the test surfaces were placed 12.7 cm 

downstream from the inlet of the 114.3 cm long test section. Figure 23 to Figure 25 are 

showing the two cylinders after the fabrication. 
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Figure 20: Geometry profiles of the 0.1016 cm (4″) and 0.4064 (16″) cm diameters. 

 

Figure 21: Calculated surface velocity distributions over 0.1016 cm (4″) and 0.4064 cm 

(16″) diameters. 
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Figure 22: Top view of 4″ diameter leading edge cylinder body. 

 

 

Figure 23: Front view of 4″ diameter leading edge cylinder body with tip. 
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Figure 24: Front view of 16″ diameter leading edge cylinder body with tip. 

 

 

Figure 25: Top view of 16″ diameter leading edge cylinder body. 
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3.5 Tip design 

Cylinder tips were designed separately and manufactured by using a rapid 

prototype 3D printer facility at UND. For this purpose, we produced highly dense points 

using several regressions to get a very smooth and nicely fit curve. In both cases, the 

points are smoothed up to 30
o
. There were two holes on the tip sections with the purpose 

of streamwise flow field measurements from the stagnation region and boundary layer 

measurement for another experiment. Tips were installed in between plywood with the 

help of drywall screws which are easy to remove and install in the test body. The tips are 

shown in the Figure 26 and Figure 27. 

 

Figure 26: Tip for small (4″ diameter) cylinder. 
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Figure 27: Tip for big (16″ diameter) cylinder. 

 

3.6 Data Acquisition System 

A Dell OptiPlex model GMT-590 computer and a HP 3497A data acquisition unit 

with an integral voltmeter having 1µV sensitivity were used throughout the experiment to 

record the temperature and pressure data. 

 

3.6.1Temperature Measurement 

Three K type (cromel-alumel) thermocouples were connected to the HP 3497A 

through a constant temperature reference junction to measure the inlet total temperatures 

of the tunnel and the ice bath. Thermocouple voltages were acquired using the data 

acquisition unit. The passive reference junction temperature was measured by a 

thermocouple immersed in an ice bath. 
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3.6.2 Pressure Measurement 

Two Rosemount pressure transducers with ± 0.1 percent quoted accuracy, and 

ranges of 250 Pa and 5000 Pa were used to measure the total pressure and the static 

pressure in the tunnel.  They were connected to data acquisition unit through a 48 ports 

pressure scanner where 44 ports were used on the low side and 4 on the high side. The 

voltages generated by the pressure transducer were recorded using the HP 3497A unit. 

 

3.7 Hot Wire Measurements 

Hot wire measurements were taken using a single wire upstream of the stagnation 

region at different locations to record the mean and fluctuating velocities. Small steps 

were taken near the stagnation region. The locations are mapped in Table-3, Appendix B. 

The x-direction is in the opposite direction of the flow from the stagnation point. 

 

Miniature 55P11 single wire manufactured by Dantec Dynamics was used to 

obtain hot wire data. According to the Dantec Dynamics catalog (Finn E. Jørgensen 2002), 

the probe has a platinum-plated tungsten wire that is 5 µm in diameter and 1 mm in 

length. The prongs of the probe are 5 mm in length. Hotwires must be calibrated before 

using for the test. The calibration technique is documented in Appendix C explained by 

Lindsey Dvorak in her master’s thesis (Lindsay A. Dvorak 2004). 

 

Traverses in the x-direction were conducted at the exact center location at the 

stagnation region between adjacent sides. The data was acquired at possible 14 different 

stations. Initially, it was started from 0.25″ ahead from stagnation region and traversed 
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incrementally based on the upstream conditions to obtain a complete picture of the flow 

field. 

An IFA 300 constant temperature anemometry (CTA) unit from TSI Inc. was 

used to operate the hot wire. A 12-bit ADC card named CIO-DAS 16/330 from 

Measurement Computing Corporation was used to capture the CTA bridge circuit output 

voltages. Mean velocities and turbulence intensities were acquired using a program 

written in QuickBasic programming language. Velocity-time data were recorded in 40 

sets for each location whereas each set contained 8192 samples. Later, a fast fourier 

transformation (FFT) was applied to map the time domain information to the frequency 

domain for spectral analysis. 

 

3.8 Fundamental Data Analysis 

A hot wire can respond at very high frequencies which allow it to measure the 

turbulent fluctuations in the flow.  In general, other velocity measuring instruments are 

less accurate in determining turbulent spectral information in air. The velocity in 

turbulent flow field varies as a function of both time and space. Therefore, the use of 

statistics is needed to define any single point values of velocity.  

The mean level of a signal, which may represent the average free stream velocity, 

is denoted by, ��. Mathematically, it can produce an average by summing a series of 

values 
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To get the time average of the square of the fluctuation of the velocity about the mean 

yields the variance of the velocity, such as 

 &� = �� −  � ��  − 1 = ("%)"*! (4.3) 
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Statistical methods require the independence of ui. From that view point, it is 

recommended to wait two or three integral time scales in between two samples to 

establish independence. 

Autocorrelation 

The autocorrelation in time is a measure of how well turbulence data is correlated 

from point to point. There is a high possibility of getting similar value at two points if 

they are recorded very close in time. But if there any long interval then the probability 

that the two will have similar values is low. Autocorrelation coefficient is defined as 

 01  ��� =  ������ ∗ ����� − ���′��  
(4.5) 
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Equation 4.5 evaluated at every time interval (t) to generate an autocorrelation curve.  

The area under the curve given by equation 4.6 is the integral time scale of turbulence 

and defined as, 

 31 =  � 01 
∞

� ����� 
(4.6) 

Since the sample size is finite, equation 4.6 is evaluated only at first zero crossing of the 

autocorrelation curve. The integral length scale can be calculated in two different ways. 

In this specific experiment, this scale is estimated based on Tylor’s hypothesis, given in 

equation 4.7 which is valid for a range up to u′/U << 1 

 ∧5= U789: . 31 (4.7) 
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CHAPTER IV 

COMPUTATIONAL PREDICTIONS FOR EXPERIMENTAL SETUP 

 

Heat transfer and aerodynamic loss predictions can be improved if the turbulence 

characteristics and its response in the presence of a body, such as a cylinder, are 

accounted for. Detailed upstream turbulence history and flow measurements in the 

vicinity of a stagnation region are required to investigate the failure of the existing 

turbulence models in these flow situations. This research will acquire and document a 

comprehensive set of data including streamwise velocity distribution, turbulent spectral 

information, and turbulent components.  

 

Computational predictions of flow approaching and over the cylindrical leading 

edge test surfaces were made in order to properly set up the experiment.  Potential flow 

theory for cylinders in crossflow predicts flow along a stagnation streamline of a cylinder 

begins to slow well upstream from the stagnation line.  This use of cylindrical leading 

edge regions with after bodies requires CFD prediction for a good estimate of the 

stagnation streamline velocity.  Consequently, CFD predictions were made for each of 

the cylindrical leading edge test surfaces in order to relate velocity near the exit to the 

ideal approach velocity. 
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4.1 Gambit Model 

A 2D steady state model shown in Figure 28 was created in Gambit by importing 

the cylinder vertex data points. The stagnation region of the cylinder was modeled first 

and then the symmetry condition was applied. A boundary layer mesh was created on the 

cylinder surface after estimating the boundary layer height for turbulent flow as shown in 

Figure 30 with a growth factor of 1.34 for 11 rows. Then the edges were meshed. After 

that, the face was meshed using quad - pave meshing scheme as shown in Figure 29. The 

inlet was set to the velocity inlet condition and the exit was set as an outflow. The bottom 

part was considered as symmetry plane to reduce the iteration time. After setting the 

boundary conditions, the model was saved as 2D and exported as mesh file to use it with 

Fluent. 

 

 

Figure 28: 2D Gambit Model. 
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Figure 29: 2D Gambit model with mesh. 

 

 

Figure 30: Close view of mesh near the stagnation region.
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4.2 Fluent Setup 

The mesh file was read into Fluent 6.3.26 as a case file. In this regard, Fluent 5/6 

solver was used to solve the flow analysis over the cylinder model. Initially, processes 

such as a grid check and mesh check were performed. Since the geometry is 2-D and 

quite straight forward, the Spalart –Almaras one equation turbulence closure model was 

used. The material was set as air with ideal gas condition since it is an incompressible 

flow for density and Sutherland’s law of three coefficient method was defined. At the 

same time, the energy equation was enabled. An operating pressure of 101, 325 Pa was 

chosen for the simulation. 

Later, boundary conditions were set such as velocity inlet, and outflow keeping all 

other boundary conditions at default settings. Discretization settings were all changed to 

second order upwind option and residual monitors were set at 1e-06 to get a better 

solution. 

The solution was then initialized and 10,000 iterations were performed. Shown below are 

the resulting residual and velocity contours. The solution was converged well in terms of 

continuity, energy and x-velocity. 
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Figure 31: Plot of residuals after 10,000 iterations. 

 

 

Figure 32: Contour plot for velocity magnitude at inlet velocity of 10 m/s. 



www.manaraa.com

53 

 

CHAPTER V 

EXPERIMENTAL RESULTS 

This chapter documents the experimental hotwire measurements taken with and 

without the presence of the large and smaller cylinders.  The turbulence generators used 

and the experimental methodology used for the measurements taken are described in 

Chapter III.  Initially, the turbulence measurements without the cylinders present are 

described.  These measurements include the mean velocity (U), rms fluctuating velocity 

(u′), the energy length scale (Lu), the integral scale (Lx), the dissipation rate (ε), and 

where appropriate the one dimensional turbulent spectrum is plotted.  Next, turbulence 

measurements with the cylinders in place are presented.  Initially, velocity distributions, 

acquired using the hotwire are presented as a function of distance from the cylinder and 

plotted with the velocity distribution predicted with CFD.  These provide an indication of 

the consistency and the difficulty of the near cylinder turbulence measurements.  Next, 

u′/u′∞ distributions are compared as a function of position comparing the different 

turbulence conditions.  Length scale distributions are also presented to provide 

information on the evolution of scale as well as influence of the cylinder surface on 

streamwise energy scale.  Comparisons of turbulent spectra are also presented showing 

some evidence of both wall blocking of large eddies and small scale intensification of the
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turbulence.  Finally, distributions of normalized dissipation are presented showing both 

streamwise decay and in some cases significant intensification.  These results are 

discussed as experimental data is presented and summarized at the end of this chapter.   

5.1 Test Conditions 

Before acquiring the turbulence data, a consistent velocity was maintained to 

obtain a targeted Reynolds number throughout the experiment by using a tunnel 

monitoring program at each condition. The tunnel condition was monitored using two 

downstream static pressures referenced to an upstream Kiel probe. An ice bath reference 

temperature was developed using a thermos flask filled with ice and water. A 

thermocouple in an oil filled glass tube was placed in the middle of the flask to sustain 

constant ice bath reference temperature. The atmospheric pressure was recorded carefully 

each time, prior to initiating the test. 

Experiments were run using the six different turbulence conditions with 

turbulence intensities ranging from 3% to 16% on the 4 inch small cylinder at four 

nominal Reynolds numbers (15,625, 31,250, 62,500 and 125,000). For the aero-

combustor turbulence condition which generated 13% turbulence condition, the 

rectangular Plexiglas test section containing the cylindrical leading edge test body was 

placed just downstream of the exit of its nozzle.  

After reaching a specific Reynolds number, the condition was monitored for a 

while to maintain a steady value till the end of each set of data capture. A similar 

procedure was repeated for other Reynolds numbers. The next setup of turbulence 

generating condition was the aero-combustor with a decay spool. This setup generated a 
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high turbulence intensity of about 9%. A similar procedure was followed for this case as 

well, keeping all the other remaining conditions constant and hot wire data sets were 

acquired. The grid generated turbulence condition was generated by first using the 

conventional nozzle in the place of the aero combustor nozzle. A rectangular spool was 

placed between the nozzle and test section. The grids were positioned in the spool at 

different locations upstream of the leading edge of cylinder and generated turbulence of 

intensities about 3% and 9%. Hot wire data sets were taken following a similar procedure 

as described above, at this condition. The data sets for the 16 inch diameter cylinder were 

also captured on the basis of Reynolds numbers at the six turbulence inlet conditions and 

were used to develop their corresponding individual analysis. 

 

5.2 Single Wire Measurements 

 

Hot wire measurements were taken using a miniature single wire probe. The axis 

of the wire was positioned perpendicular to the flow direction and parallel to the cylinder 

axis. The data were captured using a constant temperature anemometry unit. The stations 

for the traverse were located upstream of the stagnation region. Upstream velocity and 

turbulence profiles along the stagnation streamline allowed for the determination of the 

flow characteristics with the presence of different diameter cylinders in cross flow. 

Turbulent spectra measurements provided energy length scale (Lu), integral scale (Lx), 

and dissipation levels (ε). The purpose of this study is highly deliberate to offer a 

database of local fluid dynamics including velocity distributions, turbulent components, 

and turbulent spectra for leading edge diameter cylinders to support the development of 
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more accurate turbulence models. In the past,  many researchers have investigated length 

scale effect on the heat transfer but have not reported the upstream turbulence history 

along with the integral length scale, energy scale and dissipation rate. 

The energy scale is defined as 1.5 ��=
>   and is related to the size of eddies that 

contain the maximum energy in a turbulent flow. 

The integral length scale is important in characterizing the structure of turbulence. 

It is value that quantifies the integral distance of instantaneous flow velocities that are 

correlated between two points in the flow field. 

 

5.3 Description of the Flow Field 

The hot wire traversing system was started as near as possible (0.25″) to the 

stagnation surface. It was then traversed with an increment of 0.25″ at the first increment 

then 0.50″ increments up to 2″ to provide a clear view closer to the wall. After that it was 

traversed with an increment of 1″ up to a certain range based on the inlet conditions 

which are outlined in the Table-2. Smaller steps in the near wall region were made to get 

a better view of the velocity profile. The velocity-time data were taken using a miniature 

single wire 55P11 aligned parallel to the flow and were recorded for each station 40 times 

(8192 points on each file). The data were analyzed using a Fast Fourier Transformation 

(FFT) algorithm and averaged to obtain the one dimensional power spectrum of u′ in the 

flow.  
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5.4 Turbulence measurements without the cylinders  

The local turbulences were measured from the location without the cylinders at 

place. They are plotted in the 

Figure 33 as a function of distance from the stagnation point for 10 m/s. The figure shows 

the decay of turbulence as the flow approaches the stagnation point. Since without the 

cylinder there is no reasonable mean velocity gradient, the rms value of fluctuating 

component represents the local turbulence distribution trend as well. The high turbulence 

generator, the small grid at near location, and the big grid showed higher decay rates 

compared to other conditions. The decay rate is higher due to a relatively small turbulent 

scale combined with a relatively high level of turbulence. Turbulence decay can be 
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calculated from the simplified form of the turbulence kinetic energy transport equation 

where turbulence is considered as isotropic and neglecting other terms  

1�� = 1��∞ +  @� − @�2B�C∞  

Figure 33: Streamwise local turbulence distributions in the upstream from the stagnation 

point at 10 m/s. 

Energy scales and integral length scales streamwise distributions are plotted in 

Figure 34 and Figure 35 respectively. They suggested slight increasing trend as the flow 

moves toward the stagnation point from the inlet plane. This means that the average size 

of the energy containing eddies is growing bigger with the distance from the turbulence 

generating plane. 
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Figure 34: Energy scale plot along the stagnation streamline upstream of the stagnation 

point at 10 m/s. 
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Figure 35: Integral length scale plot along the stagnation streamline upstream of the 

stagnation point at 10 m/s. 

 

Dissipation rate is also plotted as the function of distance in the Figure 36. The 

dissipation of turbulent kinetic energy decreases systematically as the flow approaches 

near the stagnation point. As expected, the kinetic energy decays far from the turbulence 

generating plane and that can be measured by estimating the dissipation rate from the 

spectral plot using the -5/3 slope matching in the inertial subrange. 
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Figure 36: Dissipation rate distribution along the stagnation streamline upstream of the 

stagnation point at 10 m/s. 

 

5.5 Mean Velocity Distributions 

Streamwise mean velocity profiles at different turbulence conditions for four 

different Reynolds numbers have been taken in consideration with the presence of the 

cylinder bodies in position. In Figure 37 through Figure 48, the dimensionless mean 

velocity distributions are plotted as a function of upstream distance from the stagnation 

point. They are also compared with the data obtained from the CFD calculation using the 

Spalart - Alamaras one equation model to see how the measurements vary due to 

turbulence. As expected, the approaching flow velocity decreases as the probe moves 

closer to the leading edge. But in the experiment, the hot wire results deviated from this 

trend due to hot wire errors caused by unsteadiness or the presence of high straining field. 

1

10

100

1000

10000

1 10 100

ε
(m

2 /
s3 )

Upstream Distance, X (cm)

High Turbulnce generator(HT1) Big Grid(GR1)

Small grid at near location(GS1) Small grid at far location(GS2)

Aero Combutor(AC1) Aero Combustor with spoo(ACS)



www.manaraa.com

62 

 

The dimensionless velocity distributions for every case are very much similar at different 

Reynolds numbers and they collect together with minimum uncertainty except for a few 

cases. 

Figure 37 and Figure 38 show the approaching flow profiles for the small and big 

cylinders. In both cases, the experimental data deviated from the predictions by the CFD 

code due to errors caused by high levels of turbulence for the aero-combustor case. 

Initially, they indicated a good agreement but the hot wire measurements showed 

increasing unsteadiness error as soon as they approached the stagnation region. The 

unsteadiness encountered due to transverse fluctuating component normal to wire. As the 

flow approached near the stagnation region, the mean velocity goes down which gives 

rise in local turbulence intensity. As a consequence, the transverse fluctuating component 

starts contributing to the streamwise velocity measurements which impacts the single 

wire performance by introducing errors.  

For the case of aero combustor with decaying spool, the mean velocity 

distributions in Figure 39 and Figure 40 for both cylinders showed good agreement with 

the CFD predictions.  But closer to the wall about 0.5″ far from the stagnation region 

experimental values showed deviation from the prediction due to high relative 

unsteadiness resulting from reduced mean velocity and possibly from the rapid straining 

and vortex stretching. The similar profiles are also observed in Bearman (P.W.Bearman 

1972) and Van Fossen’s (Van Fossen, G. J.& Simoneau, R. J. 1987) experiments as flow 

approaches near the stagnation region. The big grid generated turbulence condition also 

showed the same trend as the aero-combustor with decaying spool as well. They agreed 
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well with the prediction for the most part except in the near wall region as shown in 

Figure 41 and Figure 42. 

Again, small grid turbulence at two different locations produced two different 

turbulent scales. The grid at the near location showed good agreement with the CFD 

analysis for the both cylinders in Figure 43 and Figure 44. The grid at far position 

condition is slightly overpredicted by the CFD code for the both cylinders in Figure 

45and Figure 46. The error in the effective mean velocity was caused by unsteadiness as 

the flow approached the proximity of the stagnation region resulting from the high FST.  

In all cases, the mean velocity is most likely correctly predicted but the hotwire 

data has encountered some errors that discussed earlier. Additional sources of error can 

be the vibration as the hot wire probe moved closer to the stagnation region. The probe 

support was designed with differential diameters due to the smaller diameter of hot wire 

probe. Moreover, the ID of hole on the stagnation region was 3/8″. In this condition, there 

was no contact in between probe support and the hole on the stagnation region. That 

looseness might be a reason for the probe to vibrate in the presence of FST which 

allowed hot wire to sense some false velocity magnitude vectors responsible for adding 

uncertainty in the data set. 

At the high turbulence generator condition, the small cylinder data fit the 

predicted mean velocity distribution quite well in Figure 47 whereas, big cylinder showed 

remarkable deviations from the predicted line in Figure 48. There was a high 

unsteadiness encountered due to blockage effect due to the presence of the large 

stagnation region.  
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Unsteadiness, spanwise variation in local velocity and the vibration in the probe 

due to high FST contributed a significant amount of variation in the measured and 

predicted values near the stagnation region.  Due to these errors, some points are not 

documented closer to the stagnation region to avoid complexities in understanding. A 

rough estimation of those errors is described in appendix C.  
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Figure 37: Dimensionless mean velocity distribution along normalized upstream distance 

from the cylinder stagnation point at four different Reynolds numbers for aero combustor 

(AC1) for 4″ cylinder. 

 

Figure 38: Dimensionless mean velocity distribution for 16″ cylinder along normalized 

upstream distance from the cylinder stagnation point at four different Reynolds numbers 

for aero combustor (AC1). 
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Figure 39: Dimensionless mean velocity distribution for 4″ cylinder along normalized 

upstream distance from the cylinder stagnation point at four different Reynolds numbers 

for aero combustor with spool (ACS). 

 

Figure 40: Dimensionless mean velocity distribution for 16″ cylinder along normalized 

upstream distance from the cylinder stagnation point at four different Reynolds numbers 

for aero combustor with spool (ACS). 
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Figure 41: Dimensionless mean velocity distribution for 4″ cylinder along normalized 

upstream distance from the cylinder stagnation point at four different Reynolds numbers 

with big grid (GR1). 

 

Figure 42: Dimensionless mean velocity distribution for 16″ cylinder along normalized 

upstream distance from the cylinder stagnation point at four different Reynolds numbers 

with big grid (GR1). 
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Figure 43: Dimensionless mean velocity distribution for 4″ cylinder along normalized 

upstream distance from the cylinder stagnation point at four different Reynolds numbers 

with small grid near (GS1). 

 

Figure 44: Dimensionless mean velocity distribution for 16″ cylinder along normalized 

upstream distance from the cylinder stagnation point at four different Reynolds numbers 

with small grid at near position (GS1). 
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Figure 45: Dimensionless mean velocity distribution for 4″ cylinder along normalized 

upstream distance from the cylinder stagnation point at four different Reynolds numbers 

with small grid at far position (GS2). 

 

Figure 46: Dimensionless mean velocity distribution for 16″ cylinder along normalized 

upstream distance from the cylinder stagnation point at four different Reynolds numbers 

with small grid at far position (GS2). 
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Figure 47: Dimensionless mean velocity distribution for 4″ cylinder along normalized 

upstream distance from the cylinder stagnation point at four different Reynolds numbers 

with high turbulence generator (HT1). 

 

Figure 48: Dimensionless mean velocity distribution for 16″ cylinder along normalized 

upstream distance from the cylinder stagnation point at four different Reynolds numbers 

with high turbulence generator (HT1). 
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5.6 Turbulence Characteristics 

The characteristics of turbulence parameters in the approaching flow were also 

determined from single wire measurements. Previously, it is evident from the 

experiments that FST increases the heat transfer augmentation near the stagnation region 

by enhancing the turbulent mixing. Turbulence intensity (Tu%) can be calculated based 

on the ratio of streamwise one dimensional velocity fluctuation to the mean velocity at 

any point using the following equation: 

�� =  +�′�C  

 

The energy length scale represents the average size of the energy containing eddies in the 

flow suggested by Ames et al.(Ames, F.E., and Moffat, R.J. 1990). 

B� = 1.5 �′DE  

To estimate the integral scale, Taylor’s hypothesis is used, which is well 

described by Hinze (J. Hinze 1959). The averaged spectrum is used to calculate the 

autocorrelation in time using an inverse FFT. Then the autocorrelation in time is 

integrated to the first zero crossing to estimate the autocorrelation time scale. The 

autocorrelation time scale is then multiplied by the local convective velocity to develop 

an estimate for the integral scale (Lx). 
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5.6.1 RMS fluctuating velocity 

The root-mean-square values of the streamwise component of turbulence were 

measured ahead of the body along the stagnation streamline. Most often it is difficult to 

interpret their meaning if they are plotted in terms of local turbulence intensity since the 

change in turbulence intensity is influenced by the changes in the mean velocity.  

The streamwise fluctuating component is normalize by its upstream rms value 

(��� ) and plotted as the function upstream normalized distance (X/D). Figure 49 and 

Figure 50 show the variation of ��/���  ahead of the stagnation region of both cylinders 

with six different turbulence conditions. The value of ��/���   is expected to drop to zero 

at the surface. Decay of turbulence is expected as the flow moves downstream from the 

grids or aero-combustor. The amount of decay can be estimated without the presence of 

the cylinder body. 

The small cylinder data show decay in the kinetic energy as the flow approached 

the stagnation region in most cases while showing some amplification for grid turbulence 

at far location and the aero-combustor with spool.  

Figure 49 shows the decay of the rms fluctuation approximately 55% for the high 

turbulence generator and small grid at the near location. The small grid turbulence at the 

far location showed slight amplification of about 3% at X/D = 0.25. In other cases the 

decay of rms fluctuation velocity is slow and decreases slightly. 

The big cylinder (16″) data also show similar trends for those six turbulent length 

scales but at a different level. Figure 50 shows that the 16″ cylinder attenuates the energy 
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by approximately 20% and 10% for aero-combustor and aero-combustor with decay 

spool respectively at X/D = 0.0625. The result also shows amplification for the grid at the 

far location (GS2).   

High turbulence generator case also shows decay to 60% except for the case at 

higher Reynolds number. It is also similar to the small grid at near location of stagnation 

region and starts falling off right after crossing the point at X/D = 0.1. Plots for each case 

for the four Reynolds number are documented in the Appendix D. 

 

Figure 49: RMS fluctuating velocity distributions along upstream stagnation line for the 

small cylinder. 
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Figure 50: RMS fluctuating velocity distributions along upstream stagnation line for the 

big cylinder. 
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are also shown for big cylinder in Figure 52 where the trend is analogous to small 

cylinder.  

 

Figure 51: Energy scale distributions along the upstream stagnation line for the small 

cylinder. 

 

Figure 52: Energy scale distributions along the upstream stagnation line for the big 

cylinder. 
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5.6.3 Integral Length Scale (Lx) 

Both cylinders have shown interesting features for the integral length scale at the 

six different turbulent length scales.  

The integral length scale distributions along the stagnation streamline for small 

and big cylinder are presented in the Figure 53 and Figure 54. The plots suggest that 

integral length scale decreases as it goes closer to the stagnation region of the cylinders. 

Initially, they fluctuate in a consistent manner and start to fall off after passing certain 

distance. 

Integral length scale decreases as the flow approaches to stagnation region for the 

aero-combustor case. It does not show any significant change till X/D = 0.5 from the 

leading edge. It falls gradually after crossing that distance (X/D = 0.5). The plot also 

implies that the fall off of the integral length scales dominated by the energy length scale. 

As the value of energy length scale increases, it also starts falling off earlier compared to 

those small scales.   

Big cylinder shows the similar trend as small cylinder for the integral length scale 

distribution upstream of the stagnation region. The integral scales are decreased 

whenever they are closer to the stagnation region except for the case of big grid generated 

turbulence condition in Figure 53. Initially, it shows slow increase in the integral length 

scale and eventually starts falling off after crossing the distance at X/D = 0.12. 
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Figure 53: Integral Length Scale distributions along stagnation streamline for small 

cylinder. 

 

Figure 54: Integral Length Scale distributions along stagnation streamline for big 

cylinder. 
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5.6.4 Spectrum Analysis 

Spectra measurements were taken at upstream of the stagnation region at four 

different Reynolds numbers.  Spectra are plotted at X = 1″, 2″ and 4″ upstream from the 

stagnation region as a function of wave number to get a comparative view. The wave 

number and spectral energy relationship were used to fit the inertial subrange to 

determine the dissipation rate where the constants are chosen from Ames and Moffat 

(Ames, F.E., and Moffat, R.J. 1990) experiment. 

 

F� �G�� = 1.62 I1855K E� D/  G�LM D/
 

 

G� =  2NOC∞  

 

There are three regions that can be identified from the spectral plot. The relatively 

flat portion at the lower wave numbers is called the energy-containing range. The 

spectrum then falls off at approximately -5/3 slope in which is phrased as the inertial 

subrange. A small tail region where the spectra fall off from the -5/3 slope is defined as 

the dissipation range. In general, turbulent energy is generated by velocity gradients in 

the flow. Initially, turbulence is neither homogeneous nor isotropic and it requires some 

time for the turbulence to reach these conditions. As turbulence develops, large eddies 

result from the velocity gradients in the flow. These larger eddies break down into 

smaller and smaller eddies through inertial interactions; thus, energy is transferred from 

larger eddies to these smaller eddies and forms an energy cascade. This process is 

represented by the inertial subrange. In inertial subrange, there is no addition or 
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dissipation of energy which means conservation of energy is maintained. As the eddy 

sizes turn into smaller and smaller eddies, the viscous effect becomes more and more 

dominant and turbulent energy is dissipated.  

 

All the turbulence conditions show the clear attenuation at lower wave numbers as 

the flow approaches near the stagnation region. Figures are only shown for the aero-

combustor with spool condition. From the spectrum analysis, it is quite obvious that the 

spectra showed attenuation for a range of low wave numbers which represents the large 

energy containing eddies due to the blocking effect caused by the presence of cylinder 

body in the flow. However, amplification is observed in the inertial subrange region for 

the big cylinder in Figure 56. The end portion of the spectrum called dissipation region 

where decay of energy is dominated by viscous effect which causes the spectra to fall off 

at a rate of greater than -5/3. The spectra show a longer tail due to the resolution of data 

acquisition board. 
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Figure 55: Spectra for aero-combustor with spool for the small cylinder at 10 m/s. 

 

Figure 56: Spectra for aero-combustor with spool for the big cylinder at 10 m/s. 
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5.6.5 Dissipation Rate (ε) 

Dissipation rate is approximated by matching -5/3 slope to the inertial subrange of 

the spectra and plotted against the upstream stagnation streamline of the cylinder in the 

Figure 57 and Figure 58. Dissipation rate is the measure of the rate of change in the 

turbulent kinetic energy with respect to time. It is normalized by using the value of 

dissipation rate at x = y = z = 0 without the cylinder in position. Both the cylinders 

showed interesting features in response to the dissipation rate. Dissipation rate decays 

faster for the small grid at near location and the high turbulence generator. All the 

conditions showed slight increase near the stagnation region except high turbulence 

generator condition which is in good agreement with Britter et al(R. E. Britter, J. C. R. 

Hunt AND J. C. Mumforf 1979). According to Britter et al, the dissipation of energy is 

expected to be higher in the straining flow near the cylinder than in the approach flow. 

But in this experiment, it is observed that the dissipation rate falls at the closest point to 

the stagnation region which is 0.25" away from the wall. The rms fluctuation velocity 

measurement, as discussed earlier, could be influenced by the unsteadiness due to high 

FST and the vibration in the probe holder. That may influence the dissipate rate 

calculation by contributing uncertainties, since dissipation rate is related to the cubic 

function of streamwise rms fluctuating velocity. 
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Figure 57: Dissipation rate plots in the upstream of the small cylinder. 
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Figure 58: Dissipation rate plots in the upstream of the big cylinder. 
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Figure 59: Plot of Dissipation rate against Effective length with and without the small 

cylinder (4") in position for the aero combustor (AC1) at ReD = 62,500. 

 

Dissipation rate against effective length with and without the small cylinder for 

aero-combustor is plotted in Figure 59. It is very clear that the dissipation rate decreases 

initially and then increases as it approaches near the stagnation region which is in good 

agreement with Britter et al. (R. E. Britter, J. C. R. Hunt AND J. C. Mumford 1979). And 

it is also expected that the flow with the presence of cylinder takes more time to dissipate 

its energy compare to no cylinder in position. 
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Figure 60: Plot of Dissipation rate against Effective length with and without the small 

cylinder (4") in position for the aero combustor with spool (ACS) at ReD = 62,500. 
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Figure 61: Plot of Dissipation rate against Effective length with and without the small 

cylinder (4") in position for the big grid (GR1) at ReD = 62,500. 

 

Figure 61 also shows dissipation rate plot for GR1 against effective length with 
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Figure 62: Plot of Dissipation rate against Effective length with and without the small 

cylinder (4") in position for the small grid at near location (GS1) at ReD = 62,500. 

 

Figure 62 also shows dissipation rate plot for GS1 against effective length with 
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Figure 63: Plot of Dissipation rate against Effective length with and without the small 

cylinder (4") in position for the small grid at far location (GS2) at ReD = 62,500. 

 

Figure 63 shows dissipation rate plot for GS2 against effective length with and 

without the 4″ cylinder. Initially, it decays consistently then again starts increasing as the 

flow moves toward the stagnation region. 
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Figure 64: Plot of Dissipation rate against Effective length with and without the small 

cylinder (4") in position for the high turbulence generator (HT1) at ReD = 62,500. 

 

Figure 64 shows dissipation rate plot for HT1 against effective length with and 

without the 4″ cylinder. It shows that the flow dissipates rapidly as the flow moves 

toward the stagnation region. Both the curves fall on each other nicely showing the same 

trend and dissipation takes longer time compare to no cylinder in position. 
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spool does not show any remarkable change at the beginning and starts increasing as it 

moves toward the stagnation region. 

 

 

Figure 65: Plot of Dissipation rate against Effective length with and without the big 

cylinder (16") in position for the aero combustor (AC1) at ReD = 250,000. 
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Figure 66: Plot of Dissipation rate against Effective length with and without the big 

cylinder (16") in position for the aero combustor with spool (ACS) at ReD = 250,000. 

 

 

Figure 67: Plot of Dissipation rate against Effective length with and without the big 

cylinder (16") in position for the big grid (GR1) at ReD = 250,000. 
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Dissipation rate starts decreasing very sharply for the case of big grid generated 

turbulence and it keeps consistently decreasing for the rest of the distance in the Figure 

67. Both curves fall on each other very well showing the same trend. 

 

 

Figure 68: Plot of Dissipation rate against Effective length with and without the big 

cylinder (16") in position for the small grid at near location (GS1) at ReD = 250,000. 
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effective distance to dissipate the energy from the same stand point as no cylinder 

condition. 

 

 

Figure 69: Plot of Dissipation rate against Effective length with and without the big 

cylinder (16") in position for the small grid at far location (GS2) at ReD = 250,000. 

 

Dissipation rate plot for GS2 against effective length with and without the 16″ 
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Figure 70: Plot of Dissipation rate against Effective length with and without the big 

cylinder (16") in position for the high turbulence generator (HT1) at ReD = 250,000. 

 

Figure 70 shows dissipation rate plot for HT1 against effective length with and 

without the 16″ cylinder in position. It shows that the flow dissipates rapidly as the flow 

moves toward the stagnation region. Both the curves fall and show the similar trend and 

dissipation for the cylinder in position takes a longer time compared to no cylinder in 

position. 
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CHAPTER V 

CONCLUSIONS 

 

The purpose of this study was to systematically document the detailed history of 

upstream flow field in the presence of a cylindrical leading edge, which is very important 

in understanding and predicting the heat transfer at the stagnation region of a turbine 

vane. This research was intended to acquire hotwire measurements along the stagnation 

streamline with and without the presence of the large and smaller cylinders.  These 

measurements included the mean velocity (U), the rms fluctuating velocity (u′), the 

energy length scale (Lu), the integral scale (Lx), the dissipation rate (ε), and the one 

dimensional turbulent spectrum for different turbulence conditions. Turbulence was 

generated using two bi-planer grids and two aero combustors for two different test 

bodies. The two cylindrical leading edges of different diameter (0.1016 m and 0.4064 m) 

produced Reynolds numbers ranging from 15,625 to 500,000 based on diameter and 

approach velocity. 

Test bodies were fabricated with foam boards that were stacked in between 

plywood. Both the cylinders were covered with a fiberglass epoxy board 

circumferentially to make a smooth surface downstream of the stagnation region. A 

traversing mechanism was developed that allowed the probe to move along stagnation 

streamline capable of reaching 24″ upstream. The approach velocity was estimated using
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an upstream total pressure probe and a downstream static pressure tap based on CFD 

calculation.  

The small cylinder was used in the experiment for six different scales of 

turbulence conditions at four different Reynolds numbers based on approach velocity and 

leading edge diameter. The mean velocity distributions and the streamwise rms 

fluctuating component distribution along the upstream stagnation streamline were 

obtained using hot wire anemometry. They were also compared with CFD code where 

they showed remarkable variation close to the stagnation region. The variations in the 

velocity distributions can be due to spanwise variations in the streamwise velocity, 

effective velocity error resulting from the high levels of the streamwise and lateral 

components of free stream turbulence and vibration in the probe support. These 

uncertainties are analyzed using statistical analysis and by generating random data points 

that helped in estimating the unusual errors.  For the case of streamwise rms fluctuating 

component, they showed mostly attenuation whereas grid at far location showed slight 

amplification. For the case of high turbulence generator and small grid at near location, it 

showed large decay with continuous attenuation. Different quantities like integral length 

scale (Lx), energy length scale (Lu), and dissipation rate (ε) related to turbulent spectra 

were extracted from spectrum analysis. Results suggested that as the flow is approaching 

the cylinder stagnation region, the integral length scale decreases appreciably with the 

same trend for the energy length scale as well. This means that average size of eddies 

decreases as the flow goes closer to the body. Again, dissipation rate showed strong 

initial decay for high turbulence generator (Tu = 16%), small grid at near location (Tu = 

7.8%) case and big grid (Tu = 8%) conditions. But in every case, they showed a slight 
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increase near the stagnation region. The strong streamwise decay was influenced with the 

larger transport time of the turbulence along the streamline with the decrease in velocity. 

Since the small grid at near location and big grid were comparatively closer to the test 

body, they showed that noticeable decay initially. The effective decay time that is 

required for a flow in the presence of a cylinder was modeled using the dissipation rate in 

terms of effective length based on CFD code. It suggested that the presence of a body in 

the flow slowed down the flow. It results in a longer time for decay of turbulent energy 

and was also responsible for intensifying the energy dissipation rate for two higher 

energy scales (AC1 and ACS) in comparison with the no cylinder in position. The spectra 

were captured at different upstream locations from the cylinder to estimate the dissipation 

rate that was calculated approximately by matching the -5/3 slope with the inertial 

subrange of the energy cascade. The spectrum plot at different positions also suggested 

that turbulent energy is blocked as the flow goes closer to the stagnation region in the low 

wave number range.  

The big cylinder was also tested for similar conditions to the small cylinder and 

showed analogous characteristics of turbulent parameters. The same inlet turbulence 

conditions were applied at four Reynolds numbers to observe the behavior of turbulence 

distortion. The big cylinder showed higher increase in the turbulence intensities in each 

case, which resulted from the large body presence in the flow. The big cylinder also 

showed higher uncertainty near the stagnation region due to higher blockage to the flow 

and the high frequency vibrations of the hot-wire probe support. 
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Though the hot-wire measurements were limited to upstream locations, the results 

agree well with other previous experiments. There are a good number of correlation 

models already developed that have been using to predict the heat transfer by turbine 

designers, within limitations. Those models require detailed knowledge of the local 

turbulence intensity and integral length scale distribution in the flow field. These values 

may not be known exactly for actual engine conditions, although computational fluid 

dynamics predictions may be able to establish a reasonable estimate of these values based 

on the inlet turbulence conditions, making the model moderately applicable to engine 

development. The results of from this experiment will offer insight in understanding the 

scales of turbulence that are considered as most critical in affecting surface heat transfer 

of a vane. 
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APPENDIX A 

 

 

Table 2: Table showing all the turbulence generators used with their corresponding 

turbulence intensities, length scale, and others at the stagnation point at no cylinder 

conditions. 

 

Turbulence 

Conditions 
Uave (m/s) Tu Lx (cm) Lu(cm) ε (m

2
/s

3
) 

Aero-combustor 

(AC1) 

4.433 0.153 4.267 7.158 6.494 

8.907 0.137 3.454 6.175 44.251 

17.830 0.138 3.810 7.075 313.691 

  

Aero-combustor with 

decay spool (ACS) 

4.572 0.100 4.788 8.832 1.637 

9.247 0.093 4.953 9.477 10.171 

18.469 0.092 4.826 9.810 75.968 

  

High Turbulence 

Generator (HT1) 

4.553 0.169 2.134 3.938 17.279 

9.110 0.168 2.377 4.390 122.970 

16.558 0.169 2.443 4.707 696.252 

  

Big Grid (GR1) 

5.095 0.083 1.808 3.217 3.512 

9.689 0.081 1.829 3.328 21.540 

18.638 0.081 1.942 3.194 160.752 

  

Small Grid at Near 

Location (GS1) 

4.484 0.081 1.514 1.785 3.998 

9.124 0.078 1.605 1.846 29.409 

17.868 0.079 1.118 1.969 215.962 

  

Small Grid at Far 

Location (GS2) 

4.695 0.038 2.383 3.808 0.232 

9.081 0.035 1.727 3.231 1.493 

17.612 0.035 2.134 2.854 12.127 
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APPENDIX B 

 

Table 3: Table showing all stations that used for capturing data at different turbulence 

generator conditions 

 

 

X Locations (in) AC1 ACS GS1 GR1 GR2 HT1 

0.25 √ √ √ √ √ √ 

0.5 √ √ √ √ √ √ 

1 √ √ √ √ √ √ 

1.5 √ √ √ √ √ √ 

2 √ √ √ √ √ √ 

3 √ √ √ √ √ √ 

4 √ √ √ √ √ √ 

5 √ √ √ √ √ √ 

6 √ √ √ √ √ √ 

7   √ √ √ √   

8   √ √ √ √   

9   √ √   √   

10   √ √   √   

11   √ √   √   

12   √ √   √   

13   √ √   √   
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APPENDIX C 

 

HOT WIRE CALIBRATION TECHNIQUE 

 

Calibration was required for miniature single wire and x-wires before using in the 

experiment. A calibration wind tunnel with a heat exchanger was utilized to produce the 

operating range of velocities from 0.50 m/s to 35 m/s. The target was set to calibrate hot 

wire within ± 2 percent that gave an uncertainty of ± 4 percent in the pressure differential 

according to the Bernoulli’s law. The pressure transmitters have an accuracy of ± 0.1 

percent of the full scale. Combining these uncertainties gives a differential pressure of 3.1 

Pa. The minimum velocity can be estimated to be 2.4 m/s based on Bernoulli’s equation 

within the 2 percent uncertainty. This velocity was easily generated using a simple nozzle 

setup where the differential pressure was measured in between atmosphere and upstream 

of the contraction. Bernoulli’s equation was used to calculate the inlet jet velocity from 

the calibration tunnel. 

To get velocities lower than 2.4 m/s within the preset uncertainty, a specially 

designed low velocity jet nozzle with a larger area ratio was used in addition to the 

regular nozzle that used to measure the higher velocity range. The mathematical 

correlation was developed earlier based on mass flow rate in the jet experimentally from 
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the pressure difference in the flow entering and exiting this low-speed nozzle. The 

velocity at the regular nozzle exit plane can be measured based on this mass flow rate and 

the boundary layer growth inside the nozzle. 

 

Voltage responses produced by the hot wire at different velocities were recorded 

as a function of Reynolds number based on wire diameter. Changes in density were 

accounted for due to atmospheric pressure variations. Hot wire voltages were also 

corrected for wire-to-gas temperature changes and air thermal conductivity changes based 

on a fundamental heat transfer analysis. A fourth order regression analysis was performed 

on the data prior to using the calibration. The regression analysis performed based on the 

difference between the measured voltage and the average voltage. The regression fit the 

data within ± 4 percent for the high velocity range (1.5 m/s to 35 m/s) and within ± 2 

percent for the low velocity range (0.5 m/s to 4 m/s). An intended overlap was made in 

between high and low velocity calibration jets to construct of an entire range of data, 

from 0.5 m/s to 35 m/s. calibration curve is shown in the Figure 71. 

 

Mathematical Background 

Velocities were captured as a function of Reynolds number based on wire 

diameter to account for changes in density due to atmospheric pressure variations. Hot 

wire voltages were corrected for wire-to-gas temperature changes and air thermal 

conductivity changes based on a basic heat transfer analysis at the same time. The rest of 

the article gives a general mathematical background, showing that the effective velocity 
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sensed by the hot wire, Veff, is a function of Reynolds number based on wire diameter, 

Rew. In this analysis, the Prandtl number is assumed to be nearly constant for air: 0.71. 

P =  Q�
0R = ℎ TR ��R − �U� 

V� =  ℎWRG = XO�0!Y� 

ℎ =  GWR  V�Y =  GWR  O�0!Y� 

Q�
0R = GWR  O�0!Y�  TR ��R − �U� 

 

The wire resistance, Rw, area, Aw, and diameter, Dw, all remain constant and are 

therefore combined into a constant value, C1. 

Q� = X� G O�0!Y� ��R − �U� 

Q = X� +ZG O�0!Y� [�R − �U\] 

Q̂ UU = X� +[G_  O�0!Y� ��R − �_�\ 

Solving the equations for V and Veff in terms of the square root of a function based on 

Reynolds number based on diameter allows the two to be equated, and an equation for the 

effective voltage is then found. 

 

Q`�G ��R − �a�� = Q̂ UU`�G_  ��R − �_�� 
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Q̂ UU = Q bG_G  b��R − �_���R − �a� 

 

In practice, Q� = T_ + c_C� since 0!Y =  d�Ye  

Where n= 0.45 according to King’s Law 

This analysis provides a compensation for the thermal conductivity of air (k), the 

wire-to-gas temperature difference, and density changes. Calibration of the hot wires was 

performed first for the high velocity range in order to set the appropriate buck/offset and 

gain. These values were then used for the low velocity calibration. The following 

procedures were followed that written by previous graduate student Lindsay Dvorak for 

calibration of single wire. 

 

Procedure for Calibrating a Single Wire  

1. Prepare ice bath for reference temperature. 

2. Record barometer reading and temperature in log book. 

3. Turn on the TSI IFA 300 constant temperature anemometry system and check the 

voltage fluctuation and wait for the steady state using a multimeter. (Usually it should be 

4.77 volts) 

4. Open valve for make-up water and start the pump to begin make-up water 

recirculation. 

5. Place the appropriate grounding probe in the probe holder. 

6. Start air flow through the calibration jet at a moderate velocity: 10 m/s for the high 

velocity range and 1 m/s for the low velocity range. Start up IFA ThermalPro software 
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7. Under “Diagnostics” option 

a. Set a mock offset - 1.2 

b. Set a mock gain - 9 

c. Choose wire 

d. Choose none for low-bypass filter 

8. Check and record the cable resistance for few runs and get the average value 

9. Stop air flow through the calibration jet. 

10. Remove and put away the appropriate grounding probe. 

11. Align the desired hot wire with the end of the calibration jet closely to the jet exit 

plane of the nozzle and multimeter is used to ensure the connection and circuit response 

during the experiment. 

12. Start air flow through the calibration jet. 

13. Measure the probe resistance for few runs and get the average 

14. Calculate the operating resistance using the following equation 

0_f =  0�g�/fi_j +  k 0��  ��l^�l_i/_m^in^op  −  �_� 

15. Set the operating resistance as calculated and cable resistance as measured. 

16. Switch the TSI IFA 300 from standby to run. 

17. Measure the bridge voltage at 0 m/s and at 35 m/s. 

18. Switch the TSI IFA 300 back to standby. 

19. Average the bridge voltages at 0 and 40 m/s that will give the buck or offset. 

20. Subtract the average voltage from the 40 m/s bridge voltage. 

21. Divide 5 by the result to get gain. 

22. Reset the gain and buck/offset on the IFA300 to these new values. 
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23. Switch the TSI IFA300 back to run. 

24. Initiate appropriate hot wire calibration routine in QuickBASIC. 

25. Calibrate the hot wire over the range of velocities. 

26. Use the QuickBasic program (ianalyze.bas) to perform a fourth order regression 

analysis on the voltages (Vactual – Vaverage) and wire Reynolds numbers. 

27. Switch the TSI IFA300 back to standby and remove the hotwire. 

28. Replace the high velocity calibration jet with the low velocity calibration jet. 

29. Place the hot wire in the probe holder and align the wire as stated in the step (12). 

30. Switch the TSI IFA 300 to run. 

31. Initiate appropriate hot wire calibration routine in QuickBASIC. 

32. Acquire the hot wire data over the range of velocities. 

33. Switch the TSI IFA 300 to standby. 

34. Remove the hot wire and put it away. 

35. Shut down the calibration jet and re-circulation unit. 

36. Create a single graph of using two velocity ranges. 

a. Plot the high range velocity calibration (raw data and fourth order regression of 

the calibration velocity less the average velocity and the Reynolds number recorded by 

the QuickBASIC program) and check the uncertainty range. 

b. Plot the low range velocity calibration (raw data and fourth order regression of 

the calibration velocity less the average velocity and the Reynolds number recorded by 

the QuickBASIC program) and check the uncertainty range. 

37. If they both are within the range then use the overlap region (from approximately 1.5 

m/s to 4.5 m/s) to create a new set of raw data for the entire range of velocities. 
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38. Use the QuickBasic program (ianalyze.bas) to perform another fourth order 

regression analysis on the voltages (Vcalibration – Vaverage) and Reynolds numbers. 

Calibration files should be compiled from the raw data of the calibration over the low 

range of velocities and from the raw data compiled from both the high and low range 

velocity calibrations. 

 

Figure 71: Calibration curve with 4
th

 order polynomial fit. 
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APPENDIX D 

UNCERTAINTY ANALYSIS 

 

The experimental uncertainty related to turbulence measurement was performed 

using statistical approach and general technique for the single wire measurements. All 

uncertainties are based on a 95 percent confidence interval.  

 

Single-Wire Data 

In general, turbulence parameters uncertainty is the combination of three different 

sources including statistical uncertainty, uncertainty in the calibration, and uncertainty in 

measurement technique using a hot wire. 

An uncertainty for the measurement of a mean streamwise velocity, Uave, using 

the hot wire was estimated to be ±2.8 percent. The sources of this uncertainty due to drift 

in the calibration caused by the changes in operating temperatures and an uncertainty due 

to high turbulence effects and a finite sample size, and errors due to simultaneous wire 

cooling caused by normal and spanwise fluctuating components. The uncertainty in 

calibration was estimated within ±4 percent. The possible errors due to randomness were 

minimized by gathering large samples sizes such as 8192 points.  

The effect of very high turbulence fluctuations on the hot wire response can be 

estimated by expanding the series for the n-th power of velocity to its higher order terms.. 
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An equation for the average effective velocity, Ueff, is found using the average 

velocity, Uave and the turbulence-velocity components. Errors in mean velocity from wire 

cooling due to cross stream components of turbulence can be estimated for the single 

wire using equation (2-46a) from Hinze (J. Hinze 1959). At the same time, it is 

recommended by Hinze to consider additional fluctuation component in other direction, 

since they cause a nonlinearity effect in the response of the hot wire.  

 

C^UU =  Com^  �1 + (��
2Com^� −  �′(′�

2Com^D − ⋯ … � 

 

 The overall uncertainty in the of mean velocity for the single wire was typically 

around +/- 2 percent considering the isotropic turbulence but reached as high as +/- 5 

percent for certain unsteady situations near the stagnation region due to large turbulence 

fluctuation. Hinze showed from his calculation that a turbulence intensity of 20 percent 

can contribute approximately 5 per cent for one-dimensional and 0.2 per cent for an 

isotropic turbulence. The present data sets were not corrected for this effect. 

 

The statistical uncertainty in the turbulence intensity was estimated using the Chi-

squared distribution. Chi-squared statistic is defined as a function of the degrees of 

freedom, ν, which is one less than sample population size, n. The uncertainty band of the 

variance, σ2
, can be calculated given the unbiased estimator for σ and n, SN-1, with a 

confidence level of 1 - α. For a confidence level of 95 percent, α is 0.05. 
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For the present data, 8192 points were taken at sampling rate of 15000 Hz, for the 

convective velocity magnitude of 10 m/s and the integral length scale was about 5 cm. 

Considering 2.5 times of integral time scale, estimated from the autocorrelation, the 

number of independent samples was found to be 3495. To calculate the statistical 

component of the uncertainty in Tu, a sample size of 3495 was used. For the Chi-squared 

distribution with large sample sizes, a value of χ2
 is estimated based on α/2 of 0.025, ν of 

3495, and a value of Z(1-α)/2 which is equal to 1.96. 

 

s#tL��
u��k2 , s� < &� < s#tL��

u���1 − k2�, s� 

 

s#tL��
u��k2 , s� < &� < s#tL��

u���1 − k2�, s� 

u� Zk2 , s] =  [y��Lz�� + �2s − 1���]�
2 = 3660.53 

 

u� Z1 −  k2 , s] =  [−y��Lz�� + �2s − 1���]� 
2 = 3332.8 

 

0.976 < Tu < 1.044   ��� =  + ~�
�����   ) 
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The uncertainty in Tu due to randomness is about +/- 2.33 percent and the overall 

uncertainty in u' is typically +/- 3.07 percent based on root-rum-square method explained 

by Moffat.  

 

Experimental uncertainty for the dissipation rate, energy scale, Lu, and the 

integral length scale, Lx, were also estimated. Most often it is difficult to estimate the 

exact error in calculating these parameters, since most of them derived from the 

dissipation rate which is estimated by fitting the -5/3 slope in spectra plot. To accurately 

fit a slop is difficult and it is mostly qualitative rather than being quantitative, as they are 

most often fitted based on visual judgment. The worst case of uncertainty in the 

dissipation was encountered at ReD = 62,500. Roughly this can be estimated within the 

+/- 1% band. The uncertainty in the energy scale with respect to u′ and dissipation rate 

resulted in an uncertainty of ±1 percent. The estimated uncertainty in the integral length 

scale was estimated from the data (no cylinder in position) to be about ± 8 percent for the 

lowest Reynolds number. However, the uncertainties in time scale will increase this 

uncertainty. 

  Due to high FST and possible vibration in the probe, there is a strong possibility 

of error generation. To understand the situation, a set of 8192 random data points were 

generated with an aim to distribute them in a circular region which a hot wire probe can 

sense. Then considering 16% turbulence level and a constant rms fluctuation, an 

uncertainty model is developed based on potential flow theory to determine the possible 

uncertainties. The model suggests that hot wire data does not hold good as the flow 
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approaches near the stagnation region and shows the same trend as found in the 

experiment in few worst cases. 

 

Figure 72: Velocity distribution along the stagnation streamline 
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APPENDIX E 

 

 

Streamwise RMS fluctuating velocity distributions at four Reynolds numbers 

 
 

Figure 73: Dimensionless fluctuating velocity distribution for 4″ cylinder along 

normalized upstream distance from the cylinder stagnation point at four different 

Reynolds numbers with aero-combustor (AC1). 

 
Figure 74: Dimensionless fluctuating velocity distribution for 4″ cylinder along 

normalized upstream distance from the cylinder stagnation point at four different 

Reynolds numbers for aero-combustor with spool (ACS). 
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Figure 75: Dimensionless fluctuating velocity distribution for 4″ cylinder along 

normalized upstream distance from the cylinder stagnation point at four different 

Reynolds numbers with big grid (GR1). 

 

Figure 76: Dimensionless fluctuating velocity distribution for 4″ cylinder along 

normalized upstream distance from the cylinder stagnation point at four different 

Reynolds numbers with small grid at near location (GS1). 
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Figure 77: Dimensionless fluctuating velocity distribution for 4″ cylinder along 

normalized upstream distance from the cylinder stagnation point at four different 

Reynolds numbers with small grid at far location (GS2). 

 

Figure 78: Dimensionless fluctuating velocity distribution for 4″ cylinder along 

normalized upstream distance from the cylinder stagnation point at four different 

Reynolds numbers for high turbulence generator (HT1). 
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Figure 79: Dimensionless fluctuating velocity distribution for 16″ cylinder along 

normalized upstream distance from the cylinder stagnation point at four different 

Reynolds numbers with aero combustor (AC1). 

 

Figure 80: Dimensionless fluctuating velocity distribution for 16″ cylinder along 

normalized upstream distance from the cylinder stagnation point at four different 

Reynolds numbers for aero combustor with spool (ACS). 
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Figure 81: Dimensionless fluctuating velocity distribution for 16″ cylinder along 

normalized upstream distance from the cylinder stagnation point at four different 

Reynolds numbers for big grid (GR1). 

 

Figure 82 : Dimensionless fluctuating velocity distribution for 16″ cylinder along 

normalized upstream distance from the cylinder stagnation point at four different 

Reynolds numbers for small grid at near location (GS1). 
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Figure 83: Dimensionless fluctuating velocity distribution for 16″ cylinder along 

normalized upstream distance from the cylinder stagnation point at four different 

Reynolds numbers for small grid at far location (GS2). 

 

Figure 84: Dimensionless fluctuating velocity distribution for 16″ cylinder along 

normalized upstream distance from the cylinder stagnation point at four different 

Reynolds numbers for high turbulence generator (HT1). 
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APPENDIX E 

Streamwise integral length scale distributions at four Reynolds numbers 

 

Figure 85: Integral length scale distribution for 4″ cylinder along normalized upstream 

distance from the cylinder stagnation point at four different velocities for aero combustor 

(AC1). 

 
Figure 86: Integral length scale distribution for 4″ cylinder along normalized upstream 

distance from the cylinder stagnation point at four different velocities for aero combustor 

with spool (ACS). 
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Figure 87: Integral length scale distribution for 4″ cylinder along normalized upstream 

distance from the cylinder stagnation point at four different Reynolds numbers for big 

grid (GR1). 

 
Figure 88: Integral length scale distribution for 4″ cylinder along normalized upstream 

distance from the cylinder stagnation point at four different Reynolds numbers for small 

grid near position (GS1). 
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Figure 89: Integral length scale distribution for 4″ cylinder along normalized upstream 

distance from the cylinder stagnation point at four different Reynolds numbers for small 

grid at far position (GS2). 

 

Figure 90: Integral length scale distribution for 4″ cylinder along normalized upstream 

distance from the cylinder stagnation point at four different velocities for high turbulence 

generator (HT1). 
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Figure 91: Integral length scale distribution for 16″ cylinder along normalized upstream 

distance from the cylinder stagnation point at four different velocities for aero combustor 

(AC1). 

 

Figure 92: Integral length scale distribution for 16″ cylinder along normalized upstream 

distance from the cylinder stagnation point at four different velocities for aero combustor 

with spool (ACS). 
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Figure 93: Integral length scale distribution for 16″ cylinder along normalized upstream 

distance from the cylinder stagnation point at four different Reynolds numbers for big 

grid (GR1). 

 

Figure 94: Integral length scale distribution for 16″ cylinder along normalized upstream 

distance from the cylinder stagnation point at four different Reynolds numbers for small 

grid at near position (GS1). 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6

L
x(

cm
)

X/D

2.5 m/s 5 m/s

10 m/s 20 m/s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6

L
x(

cm
)

X/D

2.5 m/s 5 m/s

10 m/s 20 m/s



www.manaraa.com

125 

 

 

Figure 95: Integral length scale distribution for 16″ cylinder along normalized upstream 

distance from the cylinder stagnation point at four different Reynolds numbers for small 

grid at far position (GS2). 

 

Figure 96: Integral length scale distribution for 16″ cylinder along normalized upstream 

distance from the cylinder stagnation point at four different Reynolds numbers for high 

turbulence generator (HT1).  
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